学年

教科

質問の種類

数学 大学生・専門学校生・社会人

大学数学、複素関数論、テータ関数に関する質問です。 写真のテータ関数の無限積表示(5.24)の式の1行目の形にどうやってしているのかと、命題5.22の(5.26)の証明を教えていただきたいです。

(b) テータ関数 ヤコビは楕円関数論の研究において, 次の級数を導入した。 9(2) = 22(-1)"-!g"-1/2)" sin(2n-1)Tu n=1 2(g/4 sin Tu-g/ sin 3Tu+q^/4 sin 5Tu-…). (5.23) 三 これはヤコビの楕円テータ関数(以下単にテータ関数(theta function))と呼 ばれるものの1つである. limd,(u)/2q'/4=Dsin Tu なので, 0,(u) は sin Tu 9→0 の一種の拡張と見ることができる。 伝統的な記号にならって, 以下 2ミe2miu a=2 q= eir, と書こう.gl<1だから Imr>0である. このとき(5.23)の右辺は TiT 2Tiu 9=e 9 2と(-1)"-1gm-1/2)?_2"-1/2 _2-n+1/2 =iこ(-1)"gm-1/2)°n-1/2 n=1 2i n=-00 = ig4z-1/2 (-1)"g"(n-1)z" n=-00 と書き直すことができる.右辺に3重積公式(5.22)を用いれば, テータ関数 の無限積表示が得られる: 0,(u) = iq'4z-1/2(1-2) II (1-g"2)(1-g"z-')(1-g") n=1. = 2q/4 sin Tu I (1-2g" cos 2Tu+g")(1-g"). 三 (5.24) n=1 命題5.22 0,(u) はuの整関数で 0,(-u) = ー6,(u). (5.25) 0 0(u) = 0 < (m,nEZ). 0,(u+1) = -0, (u), 9,(u+t) = -e-mi(r+2u)9, (u). (5.27) u= m+nT (5.26) 0 + 2u) [証明](5.25),(5.26) は(5.24)から簡単にわかる. また前節の無限積

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

教えて頂きたいです

問2 あるハンバーガーチェーンで販売されているフライドポテトは,ホームページには重量 100g,標準偏差4gと表記されている。ある店舗でポテトを購入した客から「ポテトの重量が94g しかなかった。この店はフライドポテトの量が少ないのではないか、」とクレームが入った。ポテ トの重量は正規分布に従うとして、以下の間に答えよ。 (1)平均 100g。標標準偏差4gの表記が正しいと仮定したとき,無作為抽出したフライドポテト 100 個の中に重量94g以下となるものは何個あると期待されるか、期待値として最も適切なものを以 下から選べ、 (a) 0 (b) 4 (C)7 (d) 47 (e) 94 (2) この店舗のフライドボテトを無作為に 100 個抽出して重量を調べたところ,その標本平均は 98.8gだった。平均 1000g, 標準偏差4gの表記が正しいと仮定したとき,無作為抽出した 100個 の標本平均が98.8g以下となる確率はいくらか、最も適切なものを以下から選べ。 (a) 0.3821 (b) 0.2266 (C) 0.0668 (d) 0.0256 (e) 0.0013 (3) (2) の調査結果に対してどのように判断すればよいか、最も適切なものを以下から選べ。 (a) 平均 100g, 標準偏差4gの母集団から無作為に 100 個取り出した標本平均が98.8gとなる ことは,誤差の範囲であるので、改善の必要はないと判断する。 (b) 平均 100g,標準偏差4gの母集団から無作為に 100 個取り出した標本平均が98.8gとなる ことは,5%より大きな確率で起こる。従って,このようなことは起こりえると考え,改善 の必要はないと判断する。 (c) 平均 100g,標準偏差 4gの母集団から無作為に 100個取り出した標本平均が98.8gとなる ことは,5%より小さい確率でしか起こらないことがわかった。従って,偶然ではなく何ら かの原因で内容量が少なくなっていると考え,改善の必要があると判断する。 (d) 平均 100g,標準偏差4gの母集団から無作為に 100個取り出した標本平均が98.8gとなる ことは,確率的に減多に起こらないことなので,改善の必要はないと判断する。 (e) 様々な場合が考えられ,今回の調査結果の確率を計算するまでもなく,可能性としてはあり える。そのため,改善の必要はないと判断する。

回答募集中 回答数: 0