学年

教科

質問の種類

数学 大学生・専門学校生・社会人

教えてください。

次の図形の面積を求めよ。 ぎりみ 済 1 -7 cm の多(2) 5 は でい ケ/ ち 銀出く 144° 4.5 cm 15 cm (円周率を元とする。) -5 cm をとる。 右の図は,1辺の長さが6cmの正方形の内部に, 半径が6cmの円弧を 2つかいたものである。円周率を元として, 斜線部分の面積を求めよ。 2つの扇形の面積の和から, 正三三角形の面積をひくと求められる。 2 (考え方 華学端食の水 い の消の G-)+·+(G-) +G13)1 代 ⑥ の示 副事 と 単野残式平の玉O代や釜半 AB=25, BC=20, ZC=90° である△ABC において,右の 図のように頂点Cから辺 ABへ垂線 CD を引く。このとき, 次の の五 013。 問いに答えよ。 (1) 線分 CD の長さを求めよ。 3 A D 平のの人 200 三平方の定理から, ACの長さがわかり, △ABCの 面積を2通りに表すことによって CDが求められる。 また,三角形の相似を利用することもできる。 考え方 B O1 京 お (2) AACD と△BCD の面積の比を求めよ。サ更野8.1=3.V 考え方 2つの三角形の底辺を AD, BDとみると,高さは等しいので AD:BD を求める。 0 1020 30 【園関時3図番 (0 右の図は,底面の半径が9cm, 母線の長さが12 cmの円錐 である。円周率を元として,次の問いに答えよ。 (1) この円錐の体積を求めよ。 4 12 cm 9 cm 考え方 円錐や角錐の体積は -x(底面積)×(高さ)購画 す る 関囲群e (2) この円錐の表面積を求めよ。 考え方 展開図をかいて, 側面にあたる扇形の中心角を求める。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(4)の式と(5)の式の説明を分かりやすく教えて頂けませんか?

第2章 確 家 12 5. 理(3) として採用されている. 以上の定理は確率測度 P が与えられていればどんな型の標本空間にも適 できる。もちろん, これらの定理が使えるためには, 右辺の確率の値がわか。 ていなければならない. 前に指摘したように, 標本空間が有限個の点だけをる むときは,この種の事象の確率の計算はとくに簡単になるので,いま議論をこ のような標本空間に限定することにする。 有限標本空間に対する事象 A の確率を求める際の第一歩は,標本点の各人 に確率を割り当てることである. これらの確率は, 確率の公理のはじめの2つ を満たすように割り当てねばならない。 すなわち,これらの確率はすべて非色 の数で,その和が1となるようなものでなければならない. 確率モデルが予測 に有効であるためには, 特定の標本点に割り当てる確率が,実験を多数回繰り 返したとするときその標本点が得られると期待される回数の割合と一致する上 うなものでなければならない. このような割り当ての可能性はわれわれの経験 や外部の情報,対称性に関する考察, またはこれらを一緒にしたものに基づく であろう.それゆえ,サイコロを転がした経験があってもなくても,図2の標 本空間の各標本点には1/36 の確率を割り当てることが現実的なのである。 標本点の総数を n とし, 各標本点に割り当てた確率を p1, P2, る。各標本点は1つの可能な結果を表わすから, それらは1つの事象である。 この種の事象を単一事象という. これらの事象を e1, @2, *… …, en で表わす. 明 らかにこれらは排反な事象である.さて, いかなる事象 Aも標本点の集合で あるから,Aはそれに対応している単一事象の和である.ゆえに, 公理 (3) に よって次の式が得られる。 2 *……, Pn とす n だすこと P(A} =2 P{e} =M p. と思た k UA ここで和は Aに含まれるすべての標本点についての和である.宝共具(3) 偶然をともなうゲームの多くは, 初期の確率論発展のための原動力であっ た。これらゲームの標本空間は有限個の標本点から成り,すべての標本点には 同じ確率が割り当てられている. これはたとえば,クラップ* とよばれるゲー ム(その標本空間は図2で与えられている)の場合にもいえることである. これ らの標本点の各々には確率1/36 が割り当てられる. n を標本点の総数とし, J(A) を集合 Aの中の標本点の個数とすれば, いまの場合はすべてのi=1, A A 2個のサイコロを用いて行なう 孫の取1

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

静大工学部の数学の大問一つの採点をお願いします!!!(100点満点で) それと写真のオレンジの〰︎部分で第1次導関数を求めるために2x-1で割らないといけないと思うのですが、この時2x-1≠0であると書いて確認をしないといけませんよね?その時の記述がどうしてもわからないので... 続きを読む

(1) 227900-905-19w-903=8utzBスgleodt +S39wde 190-903= faut2XBJalt- 2Btgedt+Rblt -2290-9os こ 8u +2X E9e0-90] -284glandt t6getodt-2Xgorget ニ fw-29dtt S3giaobt よって-1900-91013= 800+ S69cdt -2Jtgididt-0 (2) fw= 423-5X +2人+f00 ここでよ0は定数であるためd0=12X-10人t2=2(3X-U122-1) fwこ0とすると ここでよのは3次関数であり、どの保数はDより大きい ため根込形は右の12のとうにちる このとき極小値は出でとる (まくまより) よってfはFAX-SX+tdw=tio) そ+f10)ニ 、f10:2 よてw=478-52 +2入t2 送にんt0-2のときfん=23t-り(22-),80=00とE す。であり、下の土醤減表よりよいはたしかに極み値 4をとまでもつ。 したダらてよんこ4x-5パ+2X+2 ト~1ま Ht10|- よuつ格大 ソ「極小1 次に一もg0-903:da-2539(tidt +J gar dt gu=-dw.+21519hde -Bg dt tgo1 AV H へ 2 0 g0=-6c0+229 イ 22-リダ0#c0=2(30-0(2X-) 父は04とき g0=2(30-) このとき両辺を種めして 9w=16X-2)dX = 3X-21+C (Cは種6) またのに入こ0を代入して 3 96dt=-fw=-2 J6 34-2ktC)dt=-2 [ポーズヤく大了るニー2 8-4+2C=-2 2C--62C-3 Aよってg0:3と-2X-3 ノ人上より)み一-せ入 90:3パ-22-3 4

回答募集中 回答数: 0