学年

教科

質問の種類

数学 大学生・専門学校生・社会人

この問題の解き方が分からないため、分かる方いらっしゃれば細かく解説お願い致します!

教養基礎演習Ⅲ| 【類題3】 ある高校では、 230 人の生徒全員が、 書道、美術、音楽のうちいずれか1科目を選択しており、これら3科目 の選択状況について、次のア~エのことがわかっている。 ア書道を選択している生徒数は76人、 美術を選択している生徒数は70人である。 イ 書道を選択している男子の生徒数は、音楽を選択している女子の生徒数と同じである。 ウ美術を選択している男子の生徒数は、 男子生徒全体の3割である。 I 音楽を選択している男子の生徒数は、音楽を選択している女子生徒数の2倍である。 以上から判断して、この高校の女子の生徒数として、 正しいのはどれか。 1 100 人 2 110人 3 120人 4 130 人 5 140 人 正答肢2 【類題4】 ある高校では、230 人の生徒全員が、 書道、美術、音楽のうちいずれか1科目を選択しており、これら3科目 の選択状況について、次のア~エのことがわかっている ア 書道を選択している生徒数は69人、 美術を選択している生徒数は70人である。 イ ウ 音楽を選択している女子の生徒数と同じである。 書道を選択している男子の生徒数は、 男子生徒全体の3割である。 美術を選択している男子の生徒数は、 音楽を選択している男子の生徒数は、音楽を選択している女子生徒数の6倍である。 以上から判断して、この高校で美術を選択している女子の生徒数として、 正しいのはどれか。 1 30 人 2 31 人 3 32 人 4 33 人 5 34 人 2 【類題5】 ある高校では、260 人の生徒全員が、 書道、美術、音楽のうちいずれか1科目を選択しており、これら3科目 の選択状況について、次のア~エのことがわかっている ア書道を選択している生徒数は50人、 美術を選択している生徒数は120人である。 イ書道を選択している男子の生徒数は、 音楽を選択している女子の生徒数と同じである。 ウ美術を選択している男子の生徒数は、 男子生徒全体の5割である。 I 音楽を選択している男子の生徒数は、音楽を選択している女子生徒数の2倍である。 以上から判断して、この高校で美術を選択している女子の生徒数として、 正しいのはどれか。 1 30 人 2 32 人 3 34 人 4 36人 5 38 人

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

 高校数学Ⅲ、微分法の応用問題です。画像右側の「課題4」の解き方が分かりません。解答法を教えて頂けますと助かります。よろしくお願いします。

196 15 20 ○○○○2 最短のケーブルで都市をつなぐ方法 3つの都市の位置を地図上で確認したところ, 右のような△ABC の頂点上にあった。 このと き、どのように結べばケーブルの長さの総和が 10 最小になるだろうか。 座標平面を利用して考え B てみよう。 学習のテーマ 微分法の応用 複数の都市をネットワーク回線でつなげることを考える。このとき, コ ストを低くするためには、つなげるケーブルの長さの総和をできるだけ 短くする必要がある。 各都市をどのようにケーブルでつなげればよいか 考えてみよう。 H 3 3点をA(0, 3), B(2,0),C(20) とする。 △ABC の周および内部 に点Pをとるとき, AP+BP+CPが最小となる点Pの座標と, その ときの AP + BP + CP の最小値を求めてみよう。 ただし, AP +BP+CP が最小となるのは, 点PがABC の対称軸上にある ときであることがわかっている。 [2] ABCの最大の角が120°より大きい場合 △ABCの最大の角をはさむ2辺で3点を結ぶ 4 一般に, 3点A,B,Cを線分で結んでつなげるとき, その線分の長さ の総和が最小となるのは,次のように結んだときであることが知られて いる。 [1] ABC の最大の角が120° より小さい場合 [1] △ABCの内部に点Pをとり, 点Pから3点を 結ぶ B・ [2] B C A C 5 10 15 次に、他の4つの都市の位置を地図上で確認したところ, 正方形の 点上にあった。 ある生徒は, この4つの都市を右のように対角 Ar 線状につなげれば, ケーブルの長さの総和が最小 になると考えた。 点Pは対角線の交点である。 課題 4 R 前ページのことを利用すると、 正方形の内部 A に2点Q, R をとり、 右の図のようにして4 つの都市を結んだ方が, ケーブルの長さの総 和が短くなる場合があることがわかる。 その理由を考えてみよう。 B Q 課題学習 P R D 課題4のように正方形の内部に 2点 Q, R をとるとき, AQ+BQ+QR+CR+DR が最小となるときのつなげ方が, ケーブルの 長さの総和を最小にして、 正方形の頂点上にある4つの都市をつなげる 方法である。 2点 Q, R をどの位置にとればよいか, 座標平面を利用して考えてみ よう。 まとめの課題2 4点A(-1, 1), B(-1, -1), C(1, 1), D (11) がある。 実数 αが 0<a≦1の範囲にあるとき, 2点Q(-α,0), R (α, 0) を考える。このとき 20 5本の線分の長さの和 AQ+BQ+QR+CR+DR が最小となるようなaの植 を微分法を利用して求めてみよう。 *

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

1体1整数9(1)です。 黒線部でx y z が正の数であることから不等式を作っています。しかし、xyzが正の整数であることを用いればより厳しい条件が出ると思い、1/x + 2/x ≦ 3 と① も用いて条件を出しました。しかし、解答の方が強い条件です。なぜ、そうなるのでし... 続きを読む

9 不定方程式/範囲をしぼる 正の整数工y.zが21+2+2=2,xyzを満たすとき、 3 I y Z (1 Zの値の範囲は Szó である。 (2) 与えられた条件を満たす整数x,y,zの組をすべて求めよ. (阪南大 (2) 不等式を作って範囲をしぼる 本間のポイントは「2はあまり大きくなれない」というこ 例えばぇ=10にはなり得ない。なぜならば、このとき10yx より 1/12/01/12/1/10 とな 3 3 6 1/12/01/10+10+10=1/10 <2になるからである。大小はオマケの条件にも見えるか f f S うな繊論をすることがポイントの問題であり、大小設定が鍵を握っているとも言える。 範囲が決まれば有限個 範囲が決まると、その中に整数は有限個しかない。 1つずつ代入 ることで解決する場合が多い。 エ ■解答譚 1+2+3=2 y 免全てが同符号の数から成立 (1) より 1231212.10/20 2=+ エ 2 3 1 afe 2 ひー+ 2 1s1であるから. ①より 2 2 3 6 2 2 3 また、①+20 より多く 2 25-1/20 25- <2 253 z=2のとき より 21/2+2=1/12 2y+イエ=エリ y 2≤2 りは正 よって、2≦253(リーヌ) ※1日は回答です。正の冬用いると下出るの (2) z=3のとき, (1) の23までの等号がすべて成り立つから. -367 (330) x=y=2=3 お支 2xyをかけて 文で述べた xy-x-2y=0 :. (x-2)(y-4)=8 より20 -4だから (x-2y-4)=(8,1),(4,2) :. (x, y)=(10, 5), (6, 6) 答えは、(x,U,z)=(3,3,3), (10,5,2),(6,62) 22

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

こういった系統の問題が苦手のため、効率良い問題の解き方をどなたか分かる方教えて頂けると嬉しいです!

教養基礎演習Ⅲ| 【類題3】 ある高校では、230 人の生徒全員が、 書道、美術、音楽のうちいずれか1科目を選択しており、これら3科目 の選択状況について、次のア~エのことがわかっている。 ア 書道を選択している生徒数は76人、 美術を選択している生徒数は70人である。 イ 書道を選択している男子の生徒数は、音楽を選択している女子の生徒数と同じである。 ウ 男子生徒全体の3割である。 美術を選択している男子の生徒数は、 音楽を選択している男子の生徒数は、音楽を選択している女子生徒数の2倍である。 以上から判断して、この高校の女子の生徒数として、正しいのはどれか。 1 100 人 2 110人 3 120人 4 130 人 5 140 人 正答肢2 【類題4】 ある高校では、230 人の生徒全員が、 書道、美術、音楽のうちいずれか1科目を選択しており、これら3科目 の選択状況について、次のア~エのことがわかっている ア 書道を選択している生徒数は 69 人、 美術を選択している生徒数は70人である。 1 書道を選択している男子の生徒数は、 音楽を選択している女子の生徒数と同じである。 ウ美術を選択している男子の生徒数は、 男子生徒全体の3割である。 音楽を選択している男子の生徒数は、音楽を選択している女子生徒数の6倍である。 以上から判断して、この高校で美術を選択している女子の生徒数として、正しいのはどれか。 1 30 人 2 31 人 3 32 人 4 33 人 5 34 人 wa che 正答肢

回答募集中 回答数: 0