数学 大学生・専門学校生・社会人 約1年前 先生の説明が難しく分かりませんでした。 ここの整数の答えわかる方いますでしょうか? a ~c に当てはまる整数を答えよ. (配点: a4 |点 3点, c3点) ある大木の樹齢 X を 3 で割ると 2 余り, 5 で割ると 3 余り, 7で割ると 4 余るとい う. 300≤X400 とするとき, X=a である. II 9x-7y=1 を満たす整数 x, y を以下のよう にして求めた. 9=7×1+2,これを変形して 2=9-7×1....① 7=2x3+1 これを変形して 1=7-2×3. ...② 2=1x2+0 ' ①を② に代入すると, 1=7-2×3=7-(9-7x1)x3=7-9×3+7x1×3=7x4-9×3 となるので,これを整理すると, 9x-7y=1 を満 たす整数x, y が, x= b,y=c と求まる. 未解決 回答数: 1
数学 大学生・専門学校生・社会人 約1年前 (7)と(9)の解き方を教えて頂きたいです 10 2.2 関数 演習問題 2.1.1. 次の極限を求めよ。 n 8 (1) lim (-2)". 2n2-3n (2) lim 10.3n 大 - 2n (4) lim 818 n+1 ? 2 (7) lim →∞Vn2+3n-n (5) lim n→∞3n+2 (8) lim 1+ (3) lim 3n2-1 →2n2 +3. きけれ (6) lim 3+5n n→∞ 4n-5n+1・ n 17 2n n 1 (9)lim (9) lim 1 大 818 3n 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 約1年前 最後の13e^-4=0.238になる理由を教えてください。 解 平均が4であることより 入 = 4 したがって,Xはポアソン分布 Po (4) に従うから 4k k! P(X = k) = e-44 (k = 0, 1, 2, ...) 求める確率は P(X≦2) = P(X= 0) + P(X = 1) + P(X=2) 42 = e-4 + e-4 x4 + e-4 x 2 = 13e-4=0.238 未解決 回答数: 1
数学 大学生・専門学校生・社会人 約1年前 数学の行列について質問です 下の写真の問題の解き方がわかりません。教えていただけるとありがたいです。 23:37 Previous Problem Problem List Next Problem Consider a sequence (an) 20 defined by the following recurrence relation: n=0 21 ao = 1, a1 == -3, An+2 = 11an+1 18an (n ≥ 0). (1) Find a matrix A satisfying the following: A - [an+2] an+1 an+1 = An (2) Calculate the eigenvalues of the matrix A, where t1t2 (No partial credit). t₁ = = ったこ = (3) Find the eigenvectors of the matrix A. (i) The eigenvector with respect to the eigenvalue +1: V₁ = = t [ ], (ii) The eigenvector with respect to the eigenvalue t₂: v₂ = [ ]. (4) Diagonalize the matrix A, that is, calculate the following, where P = [v1_v2]. P-1 AP = (5) Calculate A" by using diagonalization. An 17 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 約1年前 この答えが1と10/3なのですがいくらやっても答えに繋がりません。 どなたか計算過程も踏まえて説明できる方いらっしゃれば教えて頂けると助かります! 10/30(月) 問題10速さ ある飛行機に乗るために家から空港まで自転車で行くとき、時速60kmで走行 すると出発時刻の32分前に着くが、時速36kmで走行すると出発時刻に20分 時間は? ? キ ば 空港 時速60km:出発時刻32分前 到着 ↓ 時速36km: =20分遅れる 問:時速60kmで家→空港まで自転車で行くのに要する時間 ※時間の単位を揃える!1時間=60分=60秒×60=3600秒) 32分前着 20分後者 出発時刻 3600 時間:110分=1秒 52分の差 ×60 ↑から時速60kmで走行するのと時速36kmで走行するのでは52分の差が生じる 時速60kmで走行すると時間要するのに対し、時速36kmで走行すると時間52分 要する 時速60kmxx(時間)=(家~空港) 時速36km×(x+器)時間=(家~空港)…② 式) ①、②より、60×=36(x+器) ① 36 52. ↓ 52 ※36 372 312 12となる 180 156 1872 +872 110 -60 x= ×24 1440 246 120 1440 未解決 回答数: 1
数学 大学生・専門学校生・社会人 約1年前 写真の2〜3行目の式変形がわからないので教えてください 例題 3 微分方程式 yy" = 1 - (y')' の一般解を求めよ. dy dx dz dy [解] y''=f(y,y)という形なので, z = y' とおいて,y" いると≠ ±1と仮定して、 = yy" =1-(y′')2 ⇒ yz- =1-22 介 dz dy log|22-1|=-logy 2 + co の特 2z dz 221 dy = dz dy- y -dy = - // dy (yz)2-y2=C1 (C1 = ±e ≠0の任意定数) y Z を用 ⇒ yy' = yz =±vy2 + C1 (C1は任意定数 = y' = ±1 も解だから) 介 y dy Vyy2+C1 dx =±1 ⇒ Vy2 + c1 = c2 ±æ 介 (x + C2)2 - y2 = C1 (C1, C2 は任意定数) ⇒ p.299 練習 3 (宝) 22+ 未解決 回答数: 1
数学 大学生・専門学校生・社会人 約1年前 微分方程式についてです。 この問題ではpが、yをxで微分したものなのに、pをyの関数として扱っています。 yをxで微分するということは、結果はxの関数としてでてくると思います。それなのに、なぜpをyの関数として考えているのかが分かりません。 よろしくお願いします🙇 44 第3章 微分方程式 例題 3 (いろいろな微分方程式) 2 d'y dy 2階微分方程式 2y - dx2 dx -1 について、以下の問いに答えよ。 (1) p= dy dx 形せよ。 とおくことにより,pyについての1階微分方程式に変 (2)(1)で得られた1階微分方程式を利用して,一般解を求めよ。 dy dp_dp dy 解答(1)p=- および より dx dx dy dx d'y = = dp_dp dx2 dx dy よって, 与式は次のようになる。 dp -·p=p· dy <北海道大学工学部> ◆アドバイス d²y dp dx2 dy 未解決 回答数: 1
数学 大学生・専門学校生・社会人 約1年前 お願いします! (93 右の図の直角三角形 OABについ ② て,次の内積を求めよ。 (1) OA OB (2) OA AB (3) OB-AB 0 B √3 130° 60% -2- A (1) AB・AO (2) OA BO . 未解決 回答数: 1
数学 大学生・専門学校生・社会人 約1年前 このフィボナッチ数での整数の求め方が分かりませんわかる方いましたら教えてください🙇♀️ 課題内容 フィボナッチ数列, 1,1,2,3,5,8,13,... の第 n番目の数を F(n) で表します. このとき,次の af に当てはまる整数を答え よ (配点: 1点, b1点, c1点, d1点, e3点, f3点) ① F(12)=a. ② F(13)=b. ③F(14)=c. ④F(15)=d. ⑤ F(13)^2-F(12)xF(14)=e. xの2乗を表します) ⑥ F(14)^2-F(13)xF(15)=f. (注: x^2は, 添付ファイルは ありません 未解決 回答数: 1
数学 大学生・専門学校生・社会人 約1年前 どの問題もわかりません、どなたか解き方も含め教えて下さい。 第2回 数列の極限 学生番号 名前 問1. 次の数列の極限を求めよ. (1) lim (3n-2) n→∞ (2) lim (-5n+4) n→∞ (3) lim 3n+2 n→∞ 5n +4 4 - 2n (4) lim n→∞ 4n+6 (5) lim n→∞ (-2)n 3 (6) lim 2n2 + 5n + 1 n→∞n2 +3n + 3 問 2. 次の無限級数は収束するか、 収束すればその和を求めよ. 8 (1) Σ3.37-1 n=1 ②) (L) n=1 n-1 5 n-1 >>(-)" n=1 3 (4) Σ k + 8 k=1 1 k(k+2) 1 1 1 1 1 + + 1.3 2.4 3.5 4.6 n(n+2) 回答募集中 回答数: 0