学年

教科

質問の種類

数学 大学生・専門学校生・社会人

後1週間後に受験を控えているのですが志望校の過去問の答えが公表されてなくて困ってます。赤本も出てないです。なのでできれば解答解説、せめて解答だけでも教えて下さい。お願いします。

[III] 1辺が1の正三角形 ABCにおいて, 辺BC, CA, AB 上にそれぞれ点D, E, Fをとる。 ここで, BD = p, CE = q, AF =rとし, 0<p<1, 0 <q<1,0<r<1とする。また,直線 (8) (1) 中文本ー AD と直線 BE の交点をGとし, ADEF の面積をSs とする。 e o ene 1 u ovitni 次の問いに答えよ。 [I]次の問いに答えよ。 (1) ACDE の面積を p, qを用いて表せ、また, Sをp, g, r を用いて表せ。 deiddus d Baal t (1) 0SSで, y= sin? ェ+6sin z cos.z +7cos"zの最大値と最小値を求めよ。 (2) CG をp, q, CA, TH を用いて表せ、 (2) 点Pがェ軸上の原点にある. コインを投げて, 表が出たらPをェ軸上, 正の方向に1だけ (3) 直線 CF が点Gを通るときのァをP, qを用いて表せ。 移動させ,裏が出たらPを負の方向に1だけ移動させる。コインを8回投げるときに, 8回 とする。点Gが線分 CF上を動くとき, Sの最大値とそのときのpの値を求めよ。 (4) r= ad m 1 目でPがはじめて原点に戻ってくる確率を求めよ。 () r=と とする。点Gが線分 CF上を動くとき, Sの最大値とそのときのpの値を求めよ。 do (3) 整式 P(z) を-4-2で割ると余りがェー1,z?-2a-3で割ると余りが3z+1,?-1で ed ha otdimi dd ce ow 割ると余りがェー7である. P(z) をポー6z?+11z-6で割ったときの余りを求めよ。 O (4) a」 = 1, an+1 = abe Jedl volud liotmi1go ofqpg smo an によって定められる数列{am} がある.このとき, {an}の一般項を he bnd b) 4a, +5 vel evd noenon don 求めよ。 0geigtabmatm o 6 m shi sigmyO nnio adT (5) 不等式 2"<9637 < 20+1 をみたす整数nを求めよ, ただし, 必要であればlog1o2 =D 0.3010, de mO n blo a b log1o3 = 0.4771を利用せよ。 o o smd o o agnig エ+1 o gdhos lbaoh o d d dnodeab amn o 20d anichb bomd p [II」 4,6を正の定数とする。f(z) = al+ 1|+b -1」 とし, S(z) = - とおく 1 dO bom bi Tashi Jao d dip boboano als anwamduc) n0 次の問いに答えよ。 (1) a=1,6=2の場合,関数y= S(z) のグラフを描け. n dto u TO 20m TO (2) 0<a<bの場合, 関数y =D f(z)の最小値を求めよ,d aag t o 1-4 S0 (3) a= 1,6=2の場合,-2<z< -1において, S(z) をェの整式で表せ。 (4) 関数y=S(z)が偶関数であるための a,bの満たすべき条件を求めよ。 (5) 0<a<bの場合,関数y= S(a) の最小値を求めよ. bh got o o sl gndhai anew yad) ro dw m0 d do ow w

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

数学IIIです。青チャート例題282 下の問題が全くわからないのでわかりやすく教えていただけないでしょうか?

459 重要 例題282 共通部分の体積 両側に無限に伸びた直円柱で, 切り口 が半径aの円になっているものが 2 つある。いま,これらの直円柱は中心 中心軸 π 軸が一の角をなすように交わってい 4 るとする。交わっている部分(共通部 8章 分)の体積を求めよ。 [類 日本女子大] 40 基本270,271 体 積 指針>重要例題 281 と同様に立体のようすはイメージしにくいので, 断面を考える。 立体の体積 断面積をつかむ ここでは,中心軸が作る平面からの距離がxである平面で切った断面を考える。直円柱は, その中心線と平行な平面で切ったとき, 断面は幅が一定の帯になる。したがって, 帯が重 なっている部分の断面積を考える。 解答 2つの中心軸が作る平面からの距離がxで ある平面で切った断面を考える。 の幅2/αーx° の帯が角-で交わっている /π )4 C 4 2- 1 から,その共通部分は1辺の長さが 2ー/2-2v/2V-x のひし形である。 切断面のひし形の面積は 2/21αーx·2/ー 「TI )4日 真横から見た図 Va? E42 (α-x) x よって,求める体積を Vとすると, 対称性から V=2),4/2 (αーズ)dx 3 16/2 3 練習 4点(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1) を頂点とする三角錐を C, 4点 282 (0, 0, 0), (-1, 0, 0), (0, 1, 0), (0, 0, 1)を頂点とする三角錐をx軸の正の 方向にa (0<a<1) だけ平行移動したものをDとする。 「のとき CとDの共通部分の体積V(a) を求めよ。 また, V(a) が最大になると +C650 レ 。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

これの問2の(3)がどうアプローチすればいいのか分かりません。誰か助けてくれると嬉しいです。よろしくお願いします。

正規分布に従う乱数を 100個出力した数値群を母集団とする。その数値群は以下の表である。 19 1 -5 -2 8 24 -16 25 0 10 5 19 -14 0 4 -16 -16 -7 -6 9 -5 5 17 3 -6 -6 11 2 16 4 -3 16 5 -1 8 -9 2 12 -24 -6 2 -13 0 -3 -6 16 -16 25 8 4 4 2 9 -1 7 2 -1 -10 13 12 11 13 17 -13 3 9 -2 1 -8 -8 -5 -15 -10 14 -4 -4 8 -10 3 13 -1 11 -3 -5 -1 12 -6 -14 4 10 3 -10 0 -1 -12 4 15 -17 -9 18 又、この母集団から標本として任意に 10個の数値を抽出する操作を5回試行した。その結果は以下の表で ある。 試行1回目 試行2回目 試行3回目| 25 試行4回目 試行5回目| 25 8 -16 0 -16 -6 2 5 -9 -6 15 -2 8 24 -5 14 -4 8 -10 15 -17 0 10 9 25 8 9 -1 -2 12 0 -3 2 -13 -3 10 -4 8 -17 -9 -6 2 25 9 12 -8 8 13 18 これらの表に関し以下の問いに答えよ。尚、数値計算結果が非整数の場合は整数で近似せよ。 問1.(記述統計に関して) (1) 母集団の度数分布表及び度数分布図を作成せよ。 (2) 母集団の最頻値を求めよ。 (3) 母集団の中央値を求めよ。 (4) 母集団の平均値を求めよ。 (5) 母集団の四分位範囲を求めよ。 (6) 母集団の分散を求めよ。 (7) 母集団の標準偏差を求めよ。 (8) 母集団に外れ値は存在するか述べよ。又、存在するならば明記せよ。 (9) 数値群の絶対値と度数をそれぞれ変数とする時、相関係数を求めよ。 (10) (9) の結果から数値群の絶対値と度数にはどのような相関があるか言及せよ。 問2.(推測統計に関して) (1) 試行回目の結果として標本平均をX,とした時、各試行に対する標本平均を導出せよ。 (2) 試行;回目の結果として標本分散を V; とした時、各試行に対する標本分散を導出せよ。 (3) 母集団の推定値として有効な標本平均が試行回目の結果である時、iはいくつが妥当であるか 根拠とともに述べよ。 (4)(1) から(3) で導出した推定値を参考にモーメント母関数 Mx(t) を明記せよ。 (5) 試行回数をさらに増やした時、平均値及び分散のの期待値はどうなると期待されるか述べよ。 正規分布 N(μ,o2) のモーメント母関数は Mx(t) は以下の関数で表される。 Mx(t) = exp(ut + 2 このモーメント母関数に関して以下の間に答えよ。 問3.(確率分布の解析に関して) (1) モーメント母関数の原点まわりでの導関数が以下を満たすことを示せ。 Mx) d =L. dt (2) モーメント母関数の原点まわりでの2階導関数が以下を満たすことを示せ。 d? 2 Mx(t) It=0 ミg

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

これの問2問3ってどうやってやればいいですか?

正規分布に従う乱数を 100個出力した数値群を母集団とする。その数値群は以下の表である。 19 1 -5 -2 8 24 -16 25 0 10 5 19 -14 0 4 -16 -16 -7 -6 9 -5 5 17 3 -6 -6 11 2 16 4 -3 16 5 -1 8 -9 2 12 -24 -6 2 -13 0 -3 -6 16 -16 25 8 4 4 2 9 -1 7 2 -1 -10 13 12 11 13 17 -13 3 9 -2 1 -8 -8 -5 -15 -10 14 -4 -4 8 -10 3 13 -1 11 -3 -5 -1 12 -6 -14 4 10 3 -10 0 -1 -12 4 15 -17 -9 18 又、この母集団から標本として任意に 10個の数値を抽出する操作を5回試行した。その結果は以下の表で ある。 試行1回目 試行2回目 試行3回目| 25 試行4回目 試行5回目| 25 8 -16 0 -16 -6 2 5 -9 -6 15 -2 8 24 -5 14 -4 8 -10 15 -17 0 10 9 25 8 9 -1 -2 12 0 -3 2 -13 -3 10 -4 8 -17 -9 -6 2 25 9 12 -8 8 13 18 これらの表に関し以下の問いに答えよ。尚、数値計算結果が非整数の場合は整数で近似せよ。 問1.(記述統計に関して) (1) 母集団の度数分布表及び度数分布図を作成せよ。 (2) 母集団の最頻値を求めよ。 (3) 母集団の中央値を求めよ。 (4) 母集団の平均値を求めよ。 (5) 母集団の四分位範囲を求めよ。 (6) 母集団の分散を求めよ。 (7) 母集団の標準偏差を求めよ。 (8) 母集団に外れ値は存在するか述べよ。又、存在するならば明記せよ。 (9) 数値群の絶対値と度数をそれぞれ変数とする時、相関係数を求めよ。 (10) (9) の結果から数値群の絶対値と度数にはどのような相関があるか言及せよ。 問2.(推測統計に関して) (1) 試行回目の結果として標本平均をX,とした時、各試行に対する標本平均を導出せよ。 (2) 試行;回目の結果として標本分散を V; とした時、各試行に対する標本分散を導出せよ。 (3) 母集団の推定値として有効な標本平均が試行回目の結果である時、iはいくつが妥当であるか 根拠とともに述べよ。 (4)(1) から(3) で導出した推定値を参考にモーメント母関数 Mx(t) を明記せよ。 (5) 試行回数をさらに増やした時、平均値及び分散のの期待値はどうなると期待されるか述べよ。 正規分布 N(μ,o2) のモーメント母関数は Mx(t) は以下の関数で表される。 Mx(t) = exp(ut + 2 このモーメント母関数に関して以下の間に答えよ。 問3.(確率分布の解析に関して) (1) モーメント母関数の原点まわりでの導関数が以下を満たすことを示せ。 Mx) d =L. dt (2) モーメント母関数の原点まわりでの2階導関数が以下を満たすことを示せ。 d? 2 Mx(t) It=0 ミg

回答募集中 回答数: 0