学年

教科

質問の種類

数学 大学生・専門学校生・社会人

簿記3級の問題についてお伺いしたいです。 画像の問題で、8年3月31日の前受家賃の計上がなぜ8年4/1~7/31までの4ヶ月分なのかが理解できません。 本文から期末は3/31なのになぜ7/31までの計算になるのでしょうか? よろしくお願いいたします🙇‍♀️

(1) 山梨株式会社 (決算年1回、 3月31日) における次の取引にもとづいて、 答案用紙に 第2問 示した受取家賃勘定と前受家賃勘定を記入しなさい。 ただし、 解答にあたり次の点に注 意すること。 20点 1. 取引は上から順に記入すること。 2. 日付欄は採点対象外とする。 3. 勘定科目および語句は下記の語群から選択し、 ア~クの記号で解答すること。 [語群] ア. 前期繰越 イ. 次期繰越ウ.受取 エ. 前受才.前受家賃 カ.受取家賃 キ.損益ク.前払 ×7年4月1日 前期決算日に物件Aに対する今年度4月から7月までの前受家賃を計上してい ので、再振替仕訳を行った。 1か月分の家賃は¥100,000である。 ×7年8月1日 物件Aに対する向こう半年分の家賃 (8月から1月まで)が当座預金口座に振り 込まれた。 1か月分の家賃に変更はない。 ×7年9月1日 物件Bに対する向こう1年分の家賃が当座預金口座に振り込まれた。 この取引は 新規で、1か月分の家賃は¥130,000である。 x8年2月1日 物件Aに対する向こう半年分の家賃 (2月から7月まで)が当座預金口座に振り 込まれた。 今回から1か月分の家賃は¥110,000に値上げしている。 x8年3月31日 決算日を迎え、 前受家賃を計上した。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

至急🚨 帝京大学2022年の過去問の解説お願いしたいです🙇 どなたか数学が得意な方解説お願いします🙇

数学(総合) 経済・法・文・外国語・教育・医療技術・福岡医療技術学部 〔1〕次の にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 ただし, 解答に根号が含まれる場合は根号の中の自然数が最小となる形とし,分母は有理化する こと。 また、解答が分数となる場合は既約分数で答えること。 (1) 整式(x+1)(x+3)(x-3)(x-9) + 16x2を因数分解すると (x2- ア イ となる。 x- (2) αを6-22 をこえない最大の整数とし, b=6-2√2-αとするとき 1 62 + +2= 62 ウ である。 (3) 集合A={9, a, a-3},B={1, 4, 26 + 1,62} について, ACBであり, a bの値がともに負であるとき, a = I b = オ である。 〔2〕次の にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 ただし, 解答に根号が含まれる場合は根号の中の自然数が最小となる形とし, 分母は有理化する こと。また、 解答が分数となる場合は既約分数で答えること。 (1)a,bを定数とする。 放物線y=5x²ax+a+bの頂点が点 (2, 1) であるとき, b= であり、この放物線をx軸方向に3,y軸方向に1だけ平行移動し ウ である。 た放物線の方程式はy=5x2 + ア イ x+ (2) 2次不等式xx-2<0 を満たすすべてのが 2次不等式(x-a)(x-a-5) > 0 を満たすとき,定数aの値の範囲は設する際 as I オ Saである。 〔3〕次の にあてはまる数を求め、 解答のみを解答欄に記入しなさい。 ただし, 解答に根号が含まれる場合は根号の中の自然数が最小となる形とし, 分母は有理化する こと。 また, 解答が分数となる場合は既約分数で答えること。 円に内接する四角形 ABCD において, AB=5,BC = 3,CD=2,∠ABC=60° 2つの対角線 AC と BD の交点をEとする。 このとき, (1) AD= (2) BE ED 〔4〕次の (3) M = 0 1 p ア 3 BD = 10453 (3-2 PH エ であり, BE = E 4 5 イ 年 L 1 (1) 下の図があるクラスで行ったテストについての, 37人の得点の箱ひげ図である 四分位偏差は 四分位範囲は とき, このデータの範囲は イ ウ である。 四角形 ABCDの面積は にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 ア オ 9 である。 a, b, 83, 9, 52, 79. 38, 41. 63. 35. である。 . 19 20 (点) (2) 次の10個からなるデータについて 中央値が48, 第1四分位数が38, 第3四分位 .b= エ オ である。 ただし, a < bとす 数が77であるとき,a=

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

この問題の解き方が分からないため、分かる方いらっしゃれば細かく解説お願い致します!

***** ? |||| 4 【類題3】 ある高校では、230 人の生徒全員が、 書道、美術、音楽のうちいずれか1科目を選択しており、これら3科目 の選択状況について、次のア~エのことがわかっている。 ア書道を選択している生徒数は76人、 美術を選択している生徒数は70人である。 イ 書道を選択している男子の生徒数は、音楽を選択している女子の生徒数と同じである。 ウ美術を選択している男子の生徒数は、 男子生徒全体の3割である。 エ音楽を選択している男子の生徒数は、 音楽を選択している女子生徒数の2倍である。 以上から判断して、この高校の女子の生徒数として、正しいのはどれか。 1 100 人 2 110人 3 120 人 4 130人 5 140 人 正答肢 【類題4】 ある高校では、230 人の生徒全員が、書道、美術、音楽のうちいずれか1科目を選択しており、これら3科目 の選択状況について、次のア~エのことがわかっている。 ア 書道を選択している生徒数は69人、 美術を選択している生徒数は70人である。 イ書道を選択している男子の生徒数は、 音楽を選択している女子の生徒数と同じである。 ウ美術を選択している男子の生徒数は、 男子生徒全体の3割である。 エ音楽を選択している男子の生徒数は、 音楽を選択している女子生徒数の6倍である。 以上から判断して、この高校で美術を選択している女子の生徒数として、 正しいのはどれか。 1 30 人 2 31 人 3 32 人 4 33 人 5 34 人 正答肢2 【類題5】 ある高校では、260 人の生徒全員が、 書道、美術、音楽のうちいずれか1科目を選択しており、これら3科目 の選択状況について、次のア~エのことがわかっている。 ア 書道を選択している生徒数は50人、 美術を選択している生徒数は120人である。 イ 書道を選択している男子の生徒数は、 音楽を選択している女子の生徒数と同じである。 ウ美術を選択している男子の生徒数は、 男子生徒全体の5割である。 エ音楽を選択している男子の生徒数は、 音楽を選択している女子生徒数の2倍である。 以上から判断して、この高校で美術を選択している女子の生徒数として、 正しいのはどれか。 1 30 人 2 32 人 3 34 人 4 36 人 5 38 人

未解決 回答数: 1
数学 大学生・専門学校生・社会人

この問題の解き方が分からないため、分かる方いらっしゃれば細かく解説お願い致します!

※集合② Text. p48 問題2 【類題1】 ある高校では、 230 人の生徒全員が、 書道、美術、音楽のうちいずれか1科目を選択しており、これら3科目 の選択状況について、次のア~エのことがわかっている。 ア 書道を選択している生徒数は76人、 美術を選択している生徒数は70人である。 イ書道を選択している男子の生徒数は、 音楽を選択している女子の生徒数と同じである。 ウ 美術を選択している男子の生徒数は、 男子生徒全体の3割である。 エ 音楽を選択している男子の生徒数は、音楽を選択している女子生徒数の3倍である。 以上から判断して、この高校で美術を選択している女子の生徒数として、 正しいのはどれか。 1 34 人 2 36 人 3 38 人 4 40人 5 42 人 正答肢1 【類題2】 ある高校では、230 人の生徒全員が、 書道、美術、音楽のうちいずれか1科目を選択しており、これら3科目 の選択状況について、次のア~エのことがわかっている。 ア書道を選択している生徒数は76人、 美術を選択している生徒数は70人である。 イ 書道を選択している男子の生徒数は、 音楽を選択している女子の生徒数と同じである。 ウ美術を選択している男子の生徒数は、 男子生徒全体の3割である。 エ音楽を選択している男子の生徒数は、 音楽を選択している女子生徒数の5倍である。 以上から判断して、この高校で美術を選択している女子の生徒数として、 正しいのはどれか。 3 38 人 1 34 人 2 36人 4 40人 5 42 人 正答肢1

未解決 回答数: 1