学年

教科

質問の種類

数学 大学生・専門学校生・社会人

統計学の確率密度関数の問題です。 2枚目の資料を参考にして解いていたのですが、難しかったのでどなたか詳しく教えていただくとありがたいです。

問3AさんとBさんが以下でルールが定められたゲームをする。 (ルール 1) 表に 1,裏に0と書かれた1枚のコインを, AさんとBさんがそれぞれ 2回ずつ投げる。 (ルール2) A さんの投げたコインに書かれた数を足し, その値を n とする。同様に Bさんの投げたコインに書かれた数の和も n とする。 (ルール3) -1,0,1と書かれたカードが何枚かあり、2つ束 aとbになっている。A さんは束 a から na枚のカードを引き, Bさんは束b からnB枚のカードを引く。 た だし, 2回引く場合は1枚目のカードをもとに戻してから再度引くこととする。 (補 足1も参照) (ルール4) (ルール3) におけるカードの数の積をそれぞれX,Y と書くことにする。 例えば、Aさんが2枚のカードを引き, その数が 1と1だとしたら, X = -1x1 = -1 である。 また,Bさんが1枚のカードを引き, その数が1だとしたら, Y=1とす る。(補足2も参照) そして,この数X, Y の大きい方を勝者とする。 (補足1) ルール3における束 a と束bにあるカードを引く確率はそれぞれ次で与え られているものとする。 束\数 -1 0 1 1/4 1/2 1/4 1/6 1/2 1/3 a b (補足2) A さんが1枚もカードを引かない場合, X = 0 と定義する。 同様に, B さん においてもカードを引かない場合は Y = 0 とする。 X, Y に対する同時確率密度関数をh(x,y) と書くとき, 次の問いに答えよ。 (1) n=2のときに X = 1 となる確率を求めよ。 (2) (1,-1) を求めよ。 (3) P(X = 1,Y≠0) を求めよ。 (4) AさんとBさんが引き分ける確率を求めよ。 (5) AさんがBさんに勝つ確率を求めよ。 (6) E[X] を求めよ。 (7) E[Y] を求めよ。 (8) X,Y の共分散 C' [X, Y] を求めよ。 (9) V[4X + 12Y ] を求めよ。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

統計分野の二項分布問題の解き方が分かりません どなたか教えていただきたいです!

第2問 ある植物の花の色は、 2 対立遺伝子 (A,a) のメンデル遺伝にしたがい、 “AA” は『赤』、“aa” は 『白』 であるが、 “ Aa" (ヘテロ) は赤や白とは明確に識別できる中 間色 『ピンク』 になる。 いま、この植物の 『ピンク』 の個体を自殖させて得た種子 を発芽させた 6個体を栽培している。このとき、以下の問いに答えなさい。 1) 『白』 が 1つも出ない確率はいくらか? ★P[『白』 が 1 つも出ない ] P[『白』が6個] 2)6個体中、少なくとも1個体は 『赤』 である確率はいくらか? = ★P[少なくとも1個体は『赤』] = 1-P[全てが 『赤』 ] 3) 『ピンク』が2個体以上である確率はいくらか? ★『{2個以上} = { 全体 }-{0個}-{1個}』であるから、 P[『ピンク』が2個体以上] = 4) この植物は、つぼみの時点で 『白』 か 『白でない(赤またはピンク)』 かを判別で きるものとする。 今、 ある2個体について、それらのつぼみからいずれも 『白 でない』ことが判明した。 この時点で、 6個体の全てが 『ピンク』である確率 はいくらか? ★ つぼみの時点で 『白でない』 と判明した個体が 『ピンク』 である条件確率は、 2 P[『ピンク』|『白でない』] - 1/21(11) 一号 3 1 その他の個体については、P[『ピンク』] 2 P[全てが『ピンク』 | 2個体が 『白』 でない] であるから、

回答募集中 回答数: 0