学年

教科

質問の種類

数学 大学生・専門学校生・社会人

図形の定義などを利用した「必要・十分条件」の問題です。解答も一緒に載せました。 解説をしてほしいです❗️ よろしくお願いします🙇‍♂️

四角形 ABCD に関する条件々一んを次のよう の: 平行四辺形である 2: AB=CD かっ BC=DA c: ADヶBC 9: AD/BC かつ とA=ニンC : 一つの対角線がそれぞれの中点で交わる プ: ニつの対角線の長さが等しい の : 二つの対角線か直交する : 長方彩である (1) 条件の9ののうち, 条件4の二分条件であるものをすべて挙げた組み合わせとして正しいも のを、 次の⑥-⑨のうちから一っ違べ。 ラコ @⑩ 5 。 ⑩0 72 @⑨4<。 ⑨ぁ858c7⑳47c@42cア 3) 条件6のーgのうち条件の導要条件であるものをすべて卒げた組み合わせとして正しいも のを, 次の⑳⑩-⑨のうぅちから一つ選べ。 エコ @⑩ ム ceア 0 24< @ gs.ア ⑧ ム ce9< ⑨ム4の @ 7.ぃ太? (3) [。かっしチ」」は4であるための必要十分条件である。 ココに当てはまるものを. 炊 の⑩-⑨のうちから一つ選べ。 @〉。 0< 96 @。 @7 @ヶ2 (9) 条件9一ののすべてを満たす四角形 ABCD はち。 [プコにてはまるものを. 次の ⑩~-⑨のうちから一つ選べ。 ⑥⑩ 寿しない ⑩ 正方形である @ 正方形でないひし形である @ f軸辺彩でない台肛である Fa 1 71

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

図形の定義などを利用した「必要・十分条件」の問題です。解答も一緒に載せたんですが、各設問で選択肢が適切、あるいは不適切な理由も同時に教えていただけるとうれしい です❗️ よろしくお願いします🙇‍♂️

6: 平行四辺形である 2: AB=CD かっ BC=DA c: ADヶBC 9: AD/BC かつ とA=ニとC < 一つの対角線がそれぞれの中点で交わる プ: 二つの対角線の長さが等しい, の: つの対角線が直交する を: 長方肛である (1) 条件のののうち, 条件4の二分条件であるものをすべて拳げた組み合わせとして正しいも のを、次の⑥-⑨のうちから一っ違べ, ラコ ⑩ 5。 0 2 @⑨24<。 ⑨5c7⑳947c<@47cア (②) 条件ののうち, 条件4の必要条件であるものをすべて欠げた組み合わせとして正しいも のを, 次の⑩-⑥のうちから一つ選べ。 エコ @⑳⑩ ム ceア 0 246 @ ゥes.ア ⑧⑨ %ムecす< ⑨ゅムみe9 @ 46<太9 (3) [。かっしチ」」は4であるための必要十分条件である。 に当てではまるものを. 次 の⑩-⑥⑨のうちから一つ選べ。 @〉。 0・ 97 @・ @7 @2 (《⑩ 条件9一ののすべてを満たす四角形 ABCD は ⑩-⑨のうちから一つ選べ。 ⑥⑩ 存邦しない ⑩ 正方形である @ 正方形でないひし形である @ 平行四辺彩でない台膨である 5に当てはまるものを. 次の 1 71

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

線形代数学です  教えてください! よろしくお願いします

間3 : 実?次正行列 4ニ 了 軸 の定める線形写像 の : R2 つ R2 を考える. (1) から (3) の を描き, その説明の穴埋め問題 (4) に答えよ. (Q) 恒像 の。 による「整数格子の像」を解答欄の方眼紙の範囲で図示せよ. 少なくとも ai, az, 「原点 から ゥ4(P) へ至る経路を含む範囲の格子」が入るように描くこと. (ただし, 整数格子とは, プリント p.78 図 3.2 の左側のように無限に井目が並ぶ模様であり, 方程 式p = (が は整数) の表す縦線たちと方程式 = / (/ は整数) の表す横線たちからなる. 整数格子 の像とは, 写像元の平面 R2 上の整数格子が ら。 によって写像先の平面 R2 に写った図形のことで ある. ) (②) 点P ( の写り先の点 4(P) を (1) の図中に描き込め. (3) 写像 の』。は R2 の向き (表裏) を保つか反転する (裏返す) か調べよ. (1) の図中に丸矢印を描き込む こと. @⑫ 0①) て⑬) の説明を以下のように書いた. [ア] から [カカ] に当てはまる適当な式や語句などを答えよ (3) の説明 : 区別のために, 図では写像先の R2 を s7 平面としている. 宛の R2 の任意の点 メ の位置ベタトルをx= ( ) と置く. また, 行列 4 の第 ? 列ベクトルを ai。 s 三 (ai pm …・(⑪) が成り立つ. 第 1 基本ベクトル e」 = ( ) の写り先は 64(e) = ai ・1二az 0 =a」 = ( 較 ) ドッ ( ) の写り先は 4(e。) = |ア] である。 _ の写り先の点 4(x) は, 原点を出発して a」 の [イ] 倍進み。 NT 5ことを表している. 1 は 4 の列ペベクトル ai と a。 を辺に持つ [ウ] 四辺形を敷

回答募集中 回答数: 0