数学 大学生・専門学校生・社会人 5日前 1がわかりません。計算すると3+2√2になって整数部分は6になるんじゃないんですか? 答えは5だそうです √2+1 72* の整数部分をα 小数部分を6とするとき, 次の値を求めよ。 /2-1 1 1 1140% □ (1) a □ (2) b □ (3) + b 例 未解決 回答数: 1
数学 大学生・専門学校生・社会人 7日前 円の問題です。下線部なのですが、なぜ2つの円の2つの交点と1つの円&直線の方程式の2つの交点が同じなのですか? 9A 385kを定数として, 方程式 k(x2+y2-5) Jot +(x2+y2+4x-4y+7)=0 ... ① を考えると, ① の表す図形は2円の2つの交点 を通る。 (1) 図形 ① が点 (4, 3) を通るとき k(16+9-5)+(16+9 + 16-12+7) = 0 よって 20k+36=0 ゆえに k= 9 これを①に代入して整理すると x2+y2-5x+5y-20=0 未解決 回答数: 1
数学 大学生・専門学校生・社会人 7日前 至急教えて欲しいです🙏 1. 次の [1] の方法で表示された集合を [2] の方法で表せ. (1) A={0,4,8, 12, 16, 20} (2) B={1,3,5, 9, 15, 45} 2.全体集合をU= { 1, 2, 3, 4, 5, 6,7,8,9}とし,A={3,4,5,7,8}, B ={1, 2, 5, 6, 9} とする.このとき, 次の集合を求めよ. (1) A∩B (2)Ā (3) B (4) AUB 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 8日前 4(4)(5) と 5 のリミットの計算ができません (4)はこれ以降どのようにすればいいかわからず、(5)と5の計算については全く分かりません どなたか教えてください 数学総合演習 (05/14, 解析) 解答は解答用紙1枚に全て記入すること. 裏面を使っても良い。 ・解答は 解の導出過程 (途中計算) も含めて, ていねいに記述すること. ・日付, 科目, 担当教官,氏名, 学籍番号, クラスを忘れずに記入すること. ※ 科目 数学総合演習1, 担当教官 美暁 解答用紙の提出について (ジャン シャオホン) 1. 演習レポート形式: 複数ページの解答用紙の写真を1つのPDFファイルにまとめて解答用紙に氏名、学籍番号、クラ スを忘れずに記入すること)。 ファイル上 (5MB)。 2 演習レポートのファイル名: "学籍番号演習期 pdf" としていただきますようお願いいたします。 (例: 学生 b1008300 について。 4月21日の演習の場合、レポートは "b1008300-0421.pdf になります。) 3.課題レポートの提出先: 以下の場所に提出してください。 [HOPE]-[数学総合演習11-EFGH]-数学総合演習1-解析 (1-EFGHクラス) (05/14) 提出締め切り:5月15日 (木) 午後6:30 まで。 解答の公開 5月15日 (木) からHOPEで公開されます。 1. (x+2)* を計算しなさい。 2. 次の一般項で与えられる数列のうち、 収束するものを選びなさい. an =2n+1,b=,c="ds=cosl n 3. 数列a.= (-)" が収束する範囲を求めよ。 また、収束するときの 72 極限値 lim (14) を求めよ. +80] 4. つぎの極限を調べよ。 4+8+... +4 n→∞ 1+3+…+ (2n-1) (1) lim n! (3) lim (5) lim V3n+1 72100 (2) lim n→∞0 (4) lim (1+1/+1/+ + n→∞ (6) lim noon- n 5.p>0.0>>とする。 4.+1=20 (1+pan)をみたす数列を考える。 1 + 2pan+s = (1+2pa) を示し, lim == 上を導け、 11-00 2p 未解決 回答数: 1
数学 大学生・専門学校生・社会人 14日前 解答解説をお願いします🙏 問81 (X,6) 位相空間とし, UV∈ (X の開集 合) とする. 次を示せ. (1) 任意の MC Xに対して, USM UOM. 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 30日前 大門2の簡約化解いて欲しいです。 最初、簡約化した時は、7とか9とか値がでかいから小さくしてから簡約化を始めようとか考えていたのですが、なんぼしてもダメだったので、次にゴリ押しで計算していくような方法でしました。でも、結果は2枚目の通り分母分子がすっごいでかい値になってし... 続きを読む 数学 初歩からジョルダ 3x-6y+5z+W=-7 7x+27+5w = =-9 -2x+10g+5z+14w=6 4x+y+27+2w=3 5+2g-Z+w=0 E = ) [レ 5 14 6 3-6 37 2 4 54 5 0 10 5 2 1 2 で 2 E→ Ex(t) E21(-7) E31(2) E41 (-4) E51(-5) 2 P より、 3-65 7245 2 S 10 1 2 SN'T NA 2 2 -9 630 となるので、 をおいて、拡大存的別を問約化する。 → 1 59-179 。 E34 0 125/18 5/18 自分 。 E23( 00 262/9 - 380 32/9 0 E2(6) b 102/6 - 16% 62/6 14 Esa (-14) 0 0 0 -2 - 7/3 140/22/3 。 6 0 0 5/1/3 4/3 9-1/3 2/3 3/3 122/322/325/3 - 4/17 25/234327/468 12/13 -4089 9/26 2539 ( E12(2) E42(-9) ₤32(-12) 0 0 0 0 0 0 →>>>> ¥35 F3 (56) 長は小麦) E231-1/2) ₤43(-) Ess(-) 0 - 0 0 78 0710035 156 1673 117 09 0 00 176362 13 0 0 0 L 0 0 0 00 0 O D 2539 1 8178 b -00 0 20/18328/9 2/9 2619-3893819 103/31 -26-38-9 - 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 30日前 最後できたと思ったのですが、 M=1の時の値が問題文のBと等しくなかったことにきずいて、よく考えたら二項定理が間違っていると思いました。 そして二項定理を解こうとしたのですが、どうすれば良いのか分からなかったので教えて欲しいです。 (2)方針としては(1)を使って規則性... 続きを読む [1] (1) m 010 A O = J D D O 0 O 1 9 0 m=292 A 00 m=32. A³ =AA= 8 001 010 0.0 DO = ( 0 0 0 ° P 00 0 010 000 9 11 800 10 D D O 0 060 000 m239 z Am = (2)A+4E= D 060 AE = EA +2. Bm = (A+4E)" m T 0 0 C A = A + 4m AE + 4 Em = = m 4 Am f +4₤m ex AmA +4E 04mo + 0 04h 0 0 0 40 = 4 0 4 0 0 = I (A+46) B AM + ml 4EAM- である。 mCAA mm Cm 4m 4E m = 1 B 962 m=2982 0 0 0 a B² 00 1 1=39785 006 000 0 00 f P D P O 0 4 + D 8. 0 + 00 8 0 004 + 40 040 4 。 = とかるので 45 0 D 45 6 0 4 0 D O 4 = 0 4 48 0 0 48 0 4 B³ = 000 f 120 。 + 4 D D = 4120 O O 12 D 4 9 D 4 12 0 O P 9 0 G 123962 [44m °) 0 0 44m 004 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 約1ヶ月前 (1)から分かりません。なぜこのようなグラフになるんでしょうか? 123 3章 8 関数とグラフ つけ。 かけ。 重要 例題 立つ。これを場合分けに利用 幅1の範囲で区切り ≦2x<2,2x=2で場合分け、 1≦x<2, x=2で場合分け、 =-2 -2-101 きy=-2 (2) y=-1 71 定義域によって式が異なる関数 関数f(x) (0≦x≦4) を右のように定義すると 次の関数のグラフをかけ。 (1) y=f(x) 指針 (2)y=f(f(x)) 2x (0≦x<2) f(x)= 8-2x (2≤x≤4) 定義域によって式が変わる関数では, 変わる 境目のxyの値に着目。 (2)f(f(x)) f(x)のxにf(x)を代入した式で、 f(x) <2のとき2f(x) f(x)のとき 8-2f(x) (1)のグラフにおいて,0≦f(x) <2となるxの範囲と, 2≦f(x)≦4 となるxの範囲 を見極めて場合分けをする。 (1) グラフは図 (1) のようになる。 (2f(x) (0≦f(x)<2) (2) f(f(x))= 18-2f(x) (2≤f(x)≤4) よって, (1) のグラフから 0≦x<1のとき 1≦x<2のとき 2≦x≦3のとき f(f(x))=2f(x)=2.2x=4x f(f(x))=8-2f(x)=8-2.2x =8-4x f(f(x))=8-2f(x)=8-2(8-2x) =4x-8 3<x≦4のとき f(f(x))=2f(x)=2(8-2x) 変域ごとにグラフをかく。 < (1) のグラフから,f(x) の変域は 0≦x<1のとき 0≤f(x)<2 1≦x≦3のとき ① 2≤f(x)≤4 3<x≦4のとき 0≤f(x)<2 また, 1≦x≦3のとき, f(x) の式は y=0 1≦x<2なら =16-4x f(x)=2x y=1 よって, グラフは図(2) のようになる。 y=2 (1) (2) y ya =x+1 -1 2 A M O 1 2 3 4 x 0 1 2 3 4 x 2≦x≦3なら f(x)=8-2x のように, 2を境にして 式が異なるため, (2) は左 の解答のような合計4 通 りの場合分けが必要に なってくる。 -2=0 an x= ntpと表されるとき、 とき, 01より xの整数部分を表す記号であ 参考 (2) のグラフは,式の意味を考える方法でかくこともできる。 [1]f(x) が2未満なら2倍する。 [2]f(x) が2以上4以下なら, 8から2倍を引く。 [右の図で、黒の太線・細線部分が y=f(x), 赤の実線部分が y=f(f(x)) のグラフである。] なお,f(f(x)) f(x) f(x) の 合成関数といい, (fof) (x) と書く (詳しくは数学Ⅲで学ぶ)。 とする。 8から2倍を 引く 4 2 0 4 x 2倍する 練習 関数f(x) (0≦x<1) を右のように定義するとき, ◎ 71 次の関数のグラフをかけ。 2x (0 ≤ x < 1/1) f(x)= (1) y=f(x) 2x-1 (2) y=f(x)) 11/1/1≦x<1) 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 約1ヶ月前 この問題の解き方を教えてください🙇 1.2 ヤカンの湯は, ガスを止めて5分間に, 80℃から60℃まで下った. この湯が40℃になるのには, あと何分かかるか. 室温は20℃である. ただ し, log2 0.69, log3 1.10 である. 1.3 右のような長さの細い糸の下端につけられ た質量mのおもりは, 重力の作用だけを受けるもの 10 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 約1ヶ月前 切り取り後の図形のイラスト有りで説明いただけると幸いです。。 問42 下図のように立方体ABCDEFGHがあり、 辺BCの中点をMとする。 この立 方体を、3点D、E、Mを通る平面で切断して2つの立体に分け、頂点Aを含む立体を取 り除く。 次に、 残った立体を、さらに3点D、 G、 Mを通る平面で切断して2つの立体に 分け、頂点Cを含む立体を取り除く。 残った立体の辺の数と面の数の組み合わせとして、 最も妥当なのはどれか。 (1) (2) (3) 辺の数:10、面の数:6 辺の数 10、面の数:7 辺の数 : 12 面の数:6 M A TB H (4) 辺の数: 12、 面の数: 7 (5) 辺の数 : 12 面の数 : 8 E F 未解決 回答数: 1