学年

教科

質問の種類

数学 大学生・専門学校生・社会人

小論文の添削お願いします

No. Date 近年グローバル化や少子高齢化が進んでいる。また世界には ●障害を持った体を十分に動かせない方もいる。そのためすべて の人に同じ対応をしていても十分に満足できない人もいる。そ のような状態になることで普段とは違う状況にストレスを感じ てしまうだろう。そのため安心して生活するためには不自由な く生活できる環境が必要なのではないだろうか。 近年ではグローバル化が進んでおり、日本に住む外国人も増 えてきた。日本語を日常的に使える程話せたり、読み書きを出 来る方もいるがそうでない方も多くいる。私が京都に修学旅行 に行った時に観光をしている外国に英語でインタビューをする という課題があったのだが、私の知らない言いまわしなどがいく つかあった。つまり言葉が通じないというだけで十分にストレ スにつながってしまうのではないだろうか。次いで少子高齢化 ○についても考えていこうと思う。少子高齢化も近年では問題視 されていることだが、一般的に高齢者は若ものに比べ体が弱く ○人で出来る事も少なくなってしまうだろう。私のおばあちゃん C は元気な方ではあるが牛乳や米など重いものを買う時は私に手 伝いをお願いしている。また、障害を持った方なども一人で出 ○来ない事などがあるだろう。そこでそのような人達でも生活し やすい環境が必要だと考える。 すべての方が不自由なく生活するために私は二つの方法を考 ○えた。まず一つ目はバリアフリーな施設である。外国の方は白 本人に比べ体の大きい人が多い。そのため天井を少し高くした り、風呂を広くすると良いだろう。また、高齢者や車イスを使 う方などは段差があると大変なので階段ではなくスロープを作っ たり、車イスのまま移動が出来る空間造りが必要だと思う。二つ ●目はユニバーサイデザインを使用する事である。日本語の文字 O を読む事が出来ない外国人や小さなお子様でも分かりやすい フクトグラムなどを使用することで不慣れな環境でも生活しやす ○いだろう。 以上の点から避難した人々が不安なく安全に生活するために は一人一人に合った不自由がなく生活できる環境が必要である。 KOKUYO LOOSE-LEAF ノ-836BT 6mm ruled x36 lines

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

下の方の青で囲ったところは、なぜxで表さずyとしているのですか?

■重積分...積分領域が変数に依存する場合 ○ 右図1のような立体 [分かりやすくするために階段 状に表示しているが, 実際は滑らかな局面で囲まれて いるものとする] の体積 (縦棒の体積の総和)は,面 積要素 ds=dxdy に高さz=f(x,y) を掛けて得られる体積 要素 dV=f(x,y)ds=f(x,y)dxdy の総和として, 定義域D上の重積分 JSpf(x,y)dxdy で求めることができます. of(x,y) が連続関数で,各変数の定義域が α≦x≦b, asysであるとき、この重積分は cb [ { [ f(x, y)dx } dy ...(1) a [ { [ f(x, y)dy } dx...(2) のように, 1変数の積分の繰り返しによって行うこと ができます. (1) は右図2のように, まず変数yを固定して,各々 のyについて,xで積分し(図で示した壁の面積S(y) を求めて),次にy の関数として表されたその面積を y で積分することによって体積を求めることに対応し ています。 (2)は図3のように,初めに x を固定してyで積分 し, 図で示した壁の面積S(x) を求めて、次にxで積分 するものです。 -1 ○変数の定義域が 0≦x≦1,0≦y≦xのよ うに他の変数に依存しているときは T! { [ f(x, y)dy } dx 0 または 0≦ysl, exslとして L' { [' f(x, y)dx } dy または D のように計算できます。 一般に,図4 (その平面図が図5) のように積分領 域Dの境界線が長方形でなく, 変数x,yの値に依存し ている場合 図2 図3 図4 図5 図6 B y 88 a S(x) b(v) a(y) 領域D B(X) _s(y) y b(y) X

未解決 回答数: 1
数学 大学生・専門学校生・社会人

この問題の問題13-1(3)(4)、問題13-2の解答を作ってください! お願いします!

2021年 物理学演習2 第13回 デルタ関数 関数f(x)がどのような関数であっても次のような関係を満たす8(x) をデルタ関数という。 「r86) = f0) JO (x * 0) l0(x = 0) 8(x) = このデルタ関数は物理学者の P.A. Dirac によって発明された。名前に関数とついているが、正確 には関数ではなく汎関数の一種の超関数で、線型性と連続性などを満たした汎関数である。 関数: 数 → 数 例えば x → y=f(x) 汎関数:関数 → 数例えば f(x) → f(0) = Sf(x)6(x)dx デルタ関数は関数では無いが、実際には下記のような関数の極限とみなすことができ、どの表現も 同等である。 8(x) = lim 8,(x), ど→+0 8,(x) = {o (x> £/2) 1 28 8(x) = lim 8,(x), E→+0 6,(x) = 2x?+ 2 1 8(x) = lim 8,(x), ど→+0 6(x) = e VTE 8(x) = lim 8,(x), 1 8,(x) = 「e-ddk Zt J-o 1(x2 0) lo (x < 0) 8(x) = 0'(x), 0(x) = 3次元のデルタ関数は以下のように1次元のデルタ関数の積になる。 8(r) = 6(x)6(y)8(z) (o (x =y=z= 0) lo (x =y=z=0以外の場合) 8(r) = 問題13-1 f(x)はx| → oで0となるなめらかな関数とする。デルタ関数8(x) f(x)6(x - a)dx= f(a) について次の性質を証明しなさい。 (1) x6(x) = 0 (2) 6(ax) = )(a>0) (3) 6(x) = 0°(x) so (x< 0) l1 (x> 0) 0(x)は階段関数(ヘビサイド関数)であり、e(x) = である。 {8(x - a) + 6(x + a)}(a> 0) 問題13-2 正規分布を表す次式 = (x)9 がa→ +0 のときにデルタ関数となることを証明しなさい。 1 -exp V2To 2g2

回答募集中 回答数: 0
1/3