学年

教科

質問の種類

公務員試験 大学生・専門学校生・社会人

数的処理の資料解釈の問題です。 写真1枚目が問題、2枚目が解答の、選択肢4についての部分です。 この選択肢4の解答の初めに、「市場総額の対前年増加率がいずれの年も正であるから、その他の額の構成費が前年よりも増加している年をみる」と書いてあるのですが、なぜそうなるのか分かりません。

【No. 24】 図1はある国の、バイオテクノロジー市場総額の対前年増加率の推移、図IIはバイオテクノロ ジー市場総額の構成比の推移を示したものである。 これらの図からいえることとして、 確実なのは次のう ちどれか。 (%) 15 13.0 10 10 対前年増加率 0 04 (%) 100 4.6 2005 8.0 7.3 2006 2007 2008 (年) 図 I 88 80 28. 42 € 24.8 25.3 その他 43. 32 60 40 構成比 _6.9 13.9 60 17.0 農林水産品 4.1 : 24.6 22.5 20.9 40 化成品 30.9 20 20 40.1 38.8 36.8 医薬品 21.7 0 2005 2006 2007 2008 (年) 図Ⅱ 1. 農林水産品についてみると、 2005年の額の指数を100としたとき、2008年の額の指数は500を上回っ ている。 2.2005年から2008年までの化成品の額についてみると、最も小さいのは2008年であり、次に小さいの は2005年である。 3.2007年と2008年の医薬品の額についてみると、 どちらの年も前年の額を下回っている。 4.2006年から2008年までのその他の額の対前年増加率についてみると、いずれの年もバイオテクノロジ 一市場総額の対前年増加率を下回っている。 5.2007年に対する 2008年の増加額について品目別にみると、大きい順に農林水産品、その他、 化成品、 医薬品である。

回答募集中 回答数: 0
公務員試験 大学生・専門学校生・社会人

12番のトランプの問題がよく分からないです、 なぜ数字を限定して11.12.13とわかるのでしょうか、 他の1.2.3…………ってなる可能性はないんですかね、🤔 説明簡単に書かれてるだけなのか、これじゃ理解し難いので誰か教えてくださいm(_ _)m🙏

() 18 判断推理 No.12の解説 条件からの推理 (位置関係) →問題はP.148 正答 3 赤と黒が交互,クラブとハートが隣り合わないことから, 左の6枚にクラブとダ イヤ、右の6枚にスペードとハートが並んでしまうことになる。そして他の条件よ り次の図のように位置が決まる。左から2番目と4番目のダイヤだけが確定しな い。 よって正答は3である。 1 2 3 4 5 LO 6 7 8 9 10 11 12 J K K Q K J J K Q 黒赤黒赤 黒 赤 黒 赤 黒 赤 黒赤 No.13の解説 条件からの推理(位置関係) 問題はP.148 正答 2 紅茶を注文した人を紅1, その右隣の人を紅2, ビールを注文した人をビ1, そ の右隣の人をビ2などとし, 条件ウが成立する状況を考えてみる。 下図 I①~④において, ①を紅1 とすると,②は紅2。 ここでウーロン茶を注文 したウ1を探すと条件(ウ)を満たすのは ③ しかなく、 ④はウ2。 つまり紅1の正 面はウ1である。次にビールを注文したビ1は②か④であるが,いずれにしてもビ 1の正面は紹1になる。 以上を念頭におくと,条件 (ア) から図IIが書ける。 条件 (イ)より紹興酒を飲 んでいないのはAかAの左隣だから,BはAの左隣。 よって, ウーロン茶を飲んで いないCはBの左隣にくる。 残るDはAの右隣。 これで, A~Dの位置と各人が飲 んでいる2種類の飲み物のすべてが決まる。 よって正答は2である。 図 I ③ウ1 図Ⅱ 紹2 紅1 1 24 ② 紅2 1紅2

回答募集中 回答数: 0
公務員試験 大学生・専門学校生・社会人

12番のトランプの問題がよく分からないです、 なぜ数字を限定して11.12.13とわかるのでしょうか、 他の1.2.3…………ってなる可能性はないんですかね、🤔 説明簡単に書かれてるだけなのか、これじゃ理解し難いので誰か教えてくださいm(_ _)m🙏

() 18 判断推理 No.12の解説 条件からの推理 (位置関係) →問題はP.148 正答 3 赤と黒が交互,クラブとハートが隣り合わないことから, 左の6枚にクラブとダ イヤ、右の6枚にスペードとハートが並んでしまうことになる。そして他の条件よ り次の図のように位置が決まる。左から2番目と4番目のダイヤだけが確定しな い。 よって正答は3である。 1 2 3 4 5 LO 6 7 8 9 10 11 12 J K K Q K J J K Q 黒赤黒赤 黒 赤 黒 赤 黒 赤 黒赤 No.13の解説 条件からの推理(位置関係) 問題はP.148 正答 2 紅茶を注文した人を紅1, その右隣の人を紅2, ビールを注文した人をビ1, そ の右隣の人をビ2などとし, 条件ウが成立する状況を考えてみる。 下図 I①~④において, ①を紅1 とすると,②は紅2。 ここでウーロン茶を注文 したウ1を探すと条件(ウ)を満たすのは ③ しかなく、 ④はウ2。 つまり紅1の正 面はウ1である。次にビールを注文したビ1は②か④であるが,いずれにしてもビ 1の正面は紹1になる。 以上を念頭におくと,条件 (ア) から図IIが書ける。 条件 (イ)より紹興酒を飲 んでいないのはAかAの左隣だから,BはAの左隣。 よって, ウーロン茶を飲んで いないCはBの左隣にくる。 残るDはAの右隣。 これで, A~Dの位置と各人が飲 んでいる2種類の飲み物のすべてが決まる。 よって正答は2である。 図 I ③ウ1 図Ⅱ 紹2 紅1 1 24 ② 紅2 1紅2

回答募集中 回答数: 0
公務員試験 大学生・専門学校生・社会人

この問題のa=9とあります。オレンジの線で引いてるところです。 そこがなぜ9になるかわかりません。教えてください。

である。 ひ: ひ=72: 36㎡=2:1 【No.194】 正答 4 I≦a<b<c<10 αは奇数 c-b=3 a+c 2 ②.④より. (整数) <b となる。 a αが奇数で で, cは奇数である。 ③より b=c-3 これを ④ に代入し、 a+c <c-3 2 両辺を2倍して整理する。 a+c<2c-6 a +6< c a=1 とすると, a+c 2 1+6< c 【No.195】 正答 2 7<c<10 これを満たす奇数は9しかない。 c=9 a≧3のときc>9となり①を満たす c は存在しない。 よって, 上のとおり. a=1, c = 9 に確定する。 これを⑤に代入し b=9-3 b=6 a+b+c = 1+6+9 = 16 が整数なの axb=180なので, a b はいずれも180 の約数である。 180を素因数分解すると 180=2x3x5′ となる。ここで、 αは奇数 ⇒は2を素因数にもたない であり,また bは3で割ると2余る ⇒ bは3で割り切れない bは3を素因数に持たない である。 よって, a=3²x5⁰ b=23×5^ の形に表される。 特に6の候補は 2 x5°= 4×1=4 2' x 5′ = 4×5=20 のいずれかだが、このうち 「3で割ると2 「余る」のは後者の方である。 よってb=20 に決まり そのときα=9である。 よってa+b=29である。 ES 【No.196】 正答 5 0.07692307... 13) 100 8-8×3=88 120 117 235/0 100 割り算を実行すると上のようになり、商 の小数点以下は6桁の周期で 「076923」を 繰り返す。 一方200÷6=33余り2なので、小数第 200位の数字は (繰り返し部の2桁目の)7であ る。

回答募集中 回答数: 0
公務員試験 大学生・専門学校生・社会人

この問題のような条件で、どうやったらこの解答の表が作れるのかわかりません。 わかる方がいらっしゃればぜひ教えてください。 よろしくお願い致します。

ええ 全国型 関東型 中部 北陸型 No. 369 判断推理 対戦ゲーム 23年度 一人で対戦して得点を競い。明者1人を決めるゲームがある。このゲームを次のようなルール 合い 2回戦は3人1組で対戦し、各組の勝者1人が2回戦に進む。 2回戦以降も同様とす る。 ② 2回戦以降は, 3人1組ができない余りの人数が出る場合, 得点が下位の1人または2 人は不戦敗となる。 このルールにおいて、3回戦で優勝者1人が決定し、ルール②により不戦敗となった者は全 部で3人いた。 このとき, 全対戦の最大数として正しいものはどれか。 1 18 2 19 320 4 21 5 22 地方上級 解説 3回戦で優勝者が1人決まっているので,3回 戦がいわゆる決勝戦であり,これに3人が進出 している。また, 対戦数が最も多くなるのは, 2回戦の勝者の中から不戦敗が2人出て(2回 戦の勝者から不戦敗が3人出ることはありえな い), 1回戦の勝者から不戦敗が1人出る場合 である。そうすると, 2回戦の対戦数は5とな る。 2回戦の対戦数が5であるならば, 2回戦 を行ったのは15人ということになり、この15人 がそれぞれ1回戦を行っている。さらに, 1回 戦で勝者となったが不戦敗の者が1人いるの で, 1回戦の対戦数は合計で16である。したが って、この場合の全対戦数は, 1+5+16= 22となる。なお, 1回戦の勝者から不戦敗が 2人, 2回戦の勝者から不戦敗が1人とする と, 全対戦数は19にしかならない。 よって、正答は5である。 優勝 11位 2位 3位 1位 2位 3位 HE 数学 不戦敗 1位 2位 3位 さて不戦敗 ①位 2位 3位 物理 化学 生物 1位 2位 3位 1位 2位 3位 1位 2位 3位 1位 2位 3位 1位 2位 3位 1位 2位 3位 位 2位 3位 1位 2位 3位1位 2位 3位 1位 2位 3位 1位 2位 3位 位 2位 3位 1位 2位 3位 不戦敗 1位 2位③位 正答 5 地方上級<教養>過去問500 389 地学 www 同和問題 文章理解 ww 判断推理 数的推理 資料解釈

回答募集中 回答数: 0
公務員試験 大学生・専門学校生・社会人

公務員試験 数的処理 線形計画法についてです。 一度解いて正解はしていたのですが、解説を見たら1日に得られる最大利益kが示されていました。 このkが無くても解けたのですが、他の似たような問題を解く時にも必要にはなってくるのでしょうか?? よろしくお願い致します🙇‍♀️

電気使用量 (kWh/個) 1 252千円 製品 ガス使用量 利益 2 254千円 3 256千円 4 258千円 (m/個) (千円 / 個) A 14 6 14 B 6 4 8 5 260千円 解説 製品Aの製造個数をx, 製品Bの製造個数を」とすると, 電 気使用量に関して,14x+6y<210……① ガス使用量に関して, 6x+4y<120……② が成り立つ。これを座標平面上で考えると 0は直線y=ー台x+35と x軸およびy軸で囲まれた範囲 y 7 yミー 0は直線y=ー号x+30とx軸およびッ軸で囲まれた範囲で 3 2 (6,21) ある。この両範囲の共通部分が電気使用量の上限およびガス の使用量の上限をともに満たすことになる。 ここで,1日に得られる最大利益をんとすると, 14x+8y =kである。この14x+8y=k を表す直線 (図中の太線)が, 0, ②より示される共通範囲を通り, kの値が最大となるよ うにすればよい。kの値が最大となるのは,直線14x+8y=k -+ yミー -x+30 0 がッ=ーx+35と直線y=ー号 -x+30の交点を通過する場合である。この交点の座標は, +35=-+30 より,ー5 x=6 :.y=21 より,(6,21) である。 この (6, 21)を14x+8y=kに代入すると、 14×6+8×21==k より, k=252 となり,1日に得られる最大の利益は, 252千円である。 よって,正答は1である。 正答 1

回答募集中 回答数: 0
公務員試験 大学生・専門学校生・社会人

公務員試験の問題です。わかる方解答、説明お願いし

【問題 11 しかし小説家が真理を描くに当たっては、真実性がなければならない。小説家は事実を描くのでは なくして、真実を描くのである。芸術上の真実(Riality)とは自然の事実に対立する言葉で、真実はむしろ真理に 属し、事実現実(Actuality)を包括するものなのである。我々が経験する世界が現実であり、我々が直惑する世 界が真実であるといnよう。小説を「現実識の一形態と見る見地からすれば、その真実真理としての秀れた意 義をもち」うると言っても差し支へないであらう。兎に角、小説家真理より多く語るために事実を放棄し、真実 を示すために現実を離れる事も必要となるのである。したがってモウパッサンのいふやうに、小説家の意向が「不 意にしてそして日常はれている成る事実の哲理を表現することにある以上、真実らしさのために真実を害しても、 なほしばしば事実を訂正しなければならめぬなぜなら、真実時とすると真実らしく見えない事があるからである」 また「作品における写実は、事実の普通の論理に従って、真実の完全改影を与えることで成り立ってみて、事実 が次々に起るがままに、これを一々滅紫苦案ご写し取ることでは成り立ってみない」といひ、ゲェテも芸術上の真 を語って、「真正の芸術家は芸術上の真を得んと務める。盲目な衝動に従う無な芸術家は自然の現実性を得ん と務める。彼によって芸術は最上の頂きに上げられ、これによって芸術提低の段階に引き下ろされる」と言って みるのは味はべき言葉であると思ふ 上文でいう小説家のありうべき姿として愛当なものはどれか 小説家真実を尊みばならぬが、現実を認識することはない。 2 小説家の努力は、日常の事実から真理を発掘することにある。 1 3 小説家の相婚する真理とは、現実を包括するものである。 4 小説刻独自の世界観をもたなければならめが、芸術上のレアリティは必要ではない。 5 小説索真実が、真理としての優れた意義をもちうるためにも、日常の現象をより多く取り入れるよ うに努めることである。 問題 21 A~Eの5人が同じ日に仕事を始めたが、仕事を終えた日はまちまちで、次のことがわかっている。 このとき、仕事を早く終えた者から順に並べたものは、右の1~5のどれか ア Bが終えた日とCが終えた日は3日違いだった。 イ CはAより6日はやく終えた。 ウ DはAより2日はやく終えた。 エ Dが終えた日とEが終えた日は5日違いだった。 オ Bが終えた日とEが終えた日は6日違いだった。 1. B-D-C-A-E 2. B-E-C-D-A 3. C-B-D-A-E 4. C-D-B-E-A 5. E-C-B-D-A

回答募集中 回答数: 0
1/2