学年

教科

質問の種類

数学 高校生

数学の三角関数の問題です。添付の問題の(1)の解説で、x'=rcos(α+3/π)となっている部分が、x'=rcos(3/π-α)のように思えてしまって、なぜカッコの中がα+3/πとなるのかがわかりません。基本的な考え方が身に付いていないのかもしれず、その前提で教えていただ... 続きを読む

246 基本 例題 153点の回転 π 3 点P(3, 1), 点A(1,4) を中心としてだけ回転させた点を Qとする。 (1)点が原点に移るような平行移動により、点Pが点P'に移るとする。 •だけ回転させた点 Q' の座標を求めよ。 /p.2.41 基本事 25 基本事項 12倍 点P'を原点Oを中心として π 3 (2) 点Qの座標を求めよ。 指針 点P(x0,y) を, 原点Oを中心としてのだけ回転させた点を Q(x,y) とする。 y OP=rとし、 動径 OP と x 軸の正の向きとのなす角をαと すると Xorcosa, yo-rina OQで, 径 OQx軸の正の向きとのなす角を考える と、加法定理により x=rcos(a+0)=rcosacos0-rsinasin( Xo Cos O-yosin 0 Q(rcos(a+0). ysin(a +8) P (rcosa, 2 半角 33倍 rina) 0 % 解 12倍 三角 y=rsin(α+0)=rsinacos0+rcosasin 0 た Yo cos 0+ x sin ( sin( この問題では,回転の中心が原点ではないから, 上のことを直接使うわけにはいかな い。 3点P, A, Q を 回転の中心である点が原点に移るように平行移動して考える。 (1)点Aが原点 0 に移るような平行移動により, 点Pは点 解答 P'(2,-3) に移る。次に,点Q′'の座標を (x, y) とする。 また, OP'=rとし, 動径 OP' とx軸の正の向きとのなす 角を とすると 2=rcosa, -3=rsina x軸方向に-1, y軸 方向に-4だけ平行移 動する。 COS また 更 半の 2 練習 ③ 153 よって x=rcos(a+1)= π 3 =r rcosa cos -rsinasin 3 TC rを計算する必要はな 3 √32+3√3 い。 -2018-(-3)2+3 / 2 y=rsin(u+/5) - =rsinacos 3 πC cos/trcosasin y A 3 =3/12/+2.13 2/3-3 したがって, 点 Q' の座標は 2 2+3/3 3√3 2√3-3) 2 (2)Q'は,原点が点 Aに移るような平行移動によって, 点Qに移るから,点Qの座標は (2+3√3+1.2/8-3+1)から(4+3/82/3+5) 1/20 P/ PQ 13 πだけ回転させた点 Qの座標を求めよ。 (2)点P(3,-1), 点A(-1, 2) を中心として 標を求めよ。 TC 3 だけ回転させた点Qの座 p.254 EX93 (2)

未解決 回答数: 0
1/1000