学年

教科

質問の種類

数学 高校生

この問題の表とグラフまでは書けたんですけど、グラフのa>4、a=0ってaの値について書いてあるこれはどういう意味ですか?? あと、この定数aはX=1、3の事ですか?? 誰かこの問題について解説お願いします🤲

3次方程式の実数解の個数 (2) 297 『(x)3 (定数) に変形して処理 基礎例題 177 ジのッラフと 3次方程式 x-6x*+9x=a の異なる実数解の個数が。定数αのとる値に よって,どのように変わるか調べよ。 基礎例題 176 r発展例題 184 OOO の個数 CHART Q GUIDE) る。 方程式f(x)=a の実数解の個数 7章 y=f(x)のグラフと直線 y=a の共有点の個数を調べる 1 (x)=x°-6x°+9x の増減を調べ, y=f(x) のグラフをかく。 2 直線 y=a(x軸に平行な直線)を上下に動かして、 1でかいたグラフとの共有 点の個数を調べる。 36 日解答田 f(x)=x°-6x°+9x とすると f'(x)=3x°-12x+9 -3(x-1)(x-3) f(x)=0 とすると いるす x 1 3 0 るま0いが 0 極大 f(x) | 4 極小 0 x=1, 3 y=f(x)のグラフは固定 した状態で,直線 y=a をaの値とともに上下に動 かしながら, y=f(x) の f(x)の増減表と y=f(x) のグラフは, a>4 右のようになる。 4 a=4 口このグラフと直線 y=a の共有点の 個数が、方程式の実数解の個数に一致 するから a<0, 4<a のとき1個; のとき2個; のとき3個 グラフとの共有点の個数を 0<a<4 調べる。 a f(x) が極大, 極小となる 点を,直線 y==a が通る ときのaの値が実数解の個 数の境目となる。 a=0 x 0 1 3 a=0, 4 ト a<0 0<a<4 Lecture 方程式 f(x)=g(x)の異なる実数解の個数 方程式 f(x)=g(x) の異なる実数解 a, B, Y, ソ=f(x)と y=g(x) のグラフの共有点のx座標であるから, 次のことがいえる。 は、 ソ=g(x) y=f(x) y=f(x) と y=g(x) の 方程式f(x)=g(x) の 異なる実数解の個数出 グラフの共有点の個数 上の例題は,g(x)=a の場合である。 なお, 定数aが左辺 にある場合は,まず,右辺に移項して f(x)=a の形にする。 B Y X EX 177 3次方程式 x°+3x-9x-a=0 が異なる3つの実数解をもつとき, 定数 aの値の範囲を求めよ。 関数の増減。グラフの応用 1

未解決 回答数: 1
数学 高校生

この接戦の方程式⑴番の問題でなぜy-1=4(x-0)になるのかわかりません。解説お願いします。

基礎例題166 ~発展例題179 282 接点や傾きが与えられた場合 接線の方程式(1) 基礎例 関数 y= 接線の方を 基礎例題169 (2) 傾きが-4である接線 CHAE Q G (1) グラフ上の点 (0, 1) における接線 CHART QGUIDE) 曲線 y=f(x) 上の点(a, f(a))における接線 傾き f'(a), 方程式 y-f(a)=f"(a)(x-a) (2)は次の要領で求める。 1 y=f(x) とし, 導関数f'(x) を求める。 2 接点のx座標をaとし, f'(a)=(傾き) となる aの値を求める。 3 接点の座標を求め,公式を利用して接線の方程式を求める。 日解答田 (ローx) 日解き f(x)=-2x°+4x+1 とすると (1) f(0)=4 であるから, 求める接線の f(x)=-4x+4 F(x)= 」と同意 一前ページの[例と 接線の傾きf(0) をむ 12) 『関数」 におけ 方程式は ソー1=4(x-0) すなわち 公式に当てはめる。 y=4x+1 (2) 接点のx座標をaとし, f'(a)=D-4 とすると 1 9 -4a+4=-4 すな 4 ーf(a)=-4a+4 ーf(2)=-2-2"+4-2+1 ゆえに a=2 また f(2)=1 1 0 2 x この よって, 求める接線の方程式は ソー1=-4(x-2) y=f(x) =1 すなわち 一接点の座標は(2, 1) 整理 y=-4x+9 Lecture 導関数の図形的意味 ゆ し 関数 y=f(x) の x=a における微分係数 f'(a) は, ソ=f(x)のグラフ上の点(a, f(a)) における接線の傾きを表す。 したがって,導関数f'(x) は, もとの関数 y=f(x) のグラ フ上の各点における接線の傾きを与える関数ともいえる。 例] f(x)=-2.x°+4x+1 のとき 例 傾きが -4+4 y=f(x)- 1 上の例題の関数。 f(x)=-4x+4 ソ=f(x) のグラフ上の, x座標がtである点における接線の 傾きは -4t+4 である(右の図参照)。 10112 微分

回答募集中 回答数: 0
物理 高校生

円運動の問題です この(2)以降の問題においてなぜ向心力ではなく遠心力で考えるのか教えてください。 またできれば、向心力で考えるか遠心力で考えるかの見分け方も教えていただけるとありがたいです!よろしくお願いします。

30 力学 (5) 最高点F する必要がある。 重力で 石 28 円運動 37 A そ0 長さ1の軽くて細い糸の一端に質 量mの小球をつけ, 他端を点Aに固 定する。また,Aから鉛直下方 のところにある点Bに, 細くて滑ら かなくぎが水平に固定してある。く ぎに垂直な面内で糸を張りながら小 球を持ち上げ,糸が鉛直線となす角 を 0=60° にして, 小球を静かに放 す。重力加速度をgとする。 (1) 小球が最下点Cを通るときの速さ voはいくらか。 (2) 小球が点Cを通る直前での糸の張力 T; はいくらか。また, 点Cを 通った直後の糸の張力 T: はいくらか。 (3) 小球が点Bと同じ高さの点Dを通るときの糸の張力 Thはいくら LECTURE (1) 力学的エネルギー mg(1-lcc 3 4 3 0 F E d B D 0の m に小 最 (2) 直前は半径1 り入れて力の一 カ 5時 Th= mg D糸 わ糸 :2m を近 か。 直後は半 がⅡ (4) 小球が図の点Eに達したとき, 糸がゆるんだ。 ZEBD= α と して, sin α を求めよ。 じ高さの位 により速さ 糸がたるむことなく小球がBを中心とする円弧をえがいて運動し、 Bの鉛直上方-1のところにある点Fに達するためには, はじめの 角0はいくら以上でなければならないか。その角度を lo として, Th と同 cos bo を求めよ。 (筑波大+名古屋大) (3) 点D ギー保 s Fave for Iig School o LLden

未解決 回答数: 1