学年

教科

質問の種類

数学 高校生

2枚目にある∠CYAが120°になる理由が分かりません 教えてください (1枚目に条件があり、3枚目には表があります)

第3章 形 6発展 15分 以下の問題を解答するにあたっては, 太郎さんと花子さんは、ある広い市内の宝探しゲームに参加することにした。この宝 ゲームは駅をスタート地点とし、ヒントに指定された各ポイントをめぐり、宝が隠された イントを見つけ出すゲームである。 スタート地点の駅で最初のヒント1が配られた。 a ヒント1 図書館体育館。駅の3地点から等距離にある地点Xに (1)まず。二人は、市内地図を広げて地点Xの位置を考えることにした。 体育館 213km 66 「図書館 AZ \13km 56 (2) 地点 Xに着いた二人は、ヒント2を見つけた。 ヒント2 次の条件を満たす地点Yにヒント3がある。 ・地点Y と駅の距離は7km である。 ・地点X と地点Y の距離と 地点 X と駅の距離は等しい。 ・地点Y と図書館の距離よりも、地点Y と体育館の距離の方が長い。 +静電 ヒント2がある。 太郎: 等しい距離だから,円を考えればよいのかな。 花子:円だったら,どんな円を考えればよいのだろう。 地点Yは 上にあり、 ク Bo の交点のうち、図書館からの距離が 上にあることから. ケ 方の点が地点Yである。 キ と ク の二つ ク の解答群 (解答の順序は問わない。) キ 13km 駅 Omen 〇〇 図書館,体育館, 駅のある3点を頂点とする三角形の外接円 図書館,体育館, 地点Xのある3点を頂点とする三角形の外接円 ②駅のある地点を中心とし、駅から地点Xまでの距離を半径とする円 × ③ 図書館のある地点を中心とする半径 13 2 kmの円 ④ 地点 X を中心とする半径 7kmの円× ⑤駅を中心とする半径 7kmの円 3 図形と計量 CV 花子 : 図書館のある地点をA. 体育館のある地点をB, 駅のある地点をCとして考 えることにしよう。 ケ の解答群 太郎: 地点 XはA, B, Cの3点から等距離にあるから, ABCの外接円の中心 が地点Xだね。 ⑩ 短い ① 長い 花子 : A と B B と C,CとAの距離は等しく13kmだから、駅から地点Xまで の距離がわかるね。 ウ km先が地点Y である。 よって、駅のある地点をCとするとき, 地点 Xから ∠CXY= アイ V コ となる方向 エ 駅から地点Xまでの距離は アイ ウ I km先が地点 X である。 駅のある地点をCとするとき、駅から∠BCX=オカとなる方向の kmであるから、体育館のある地点をB アイウ コ については,最も近いものを、次の①~⑤のうちから一つ選べ。 I 30 34 ② 45 156 ④ 60 70

回答募集中 回答数: 0
物理 高校生

(5)で電荷の移動する方向を求める問題なのですが、コンデンサーBの方が容量が大きい為BからAに移動すると思ったのですがなぜAからBに移動するのか教えて頂きたいです。お願いします🙇‍♀️

練習問題 157. 問いに答えよ. 図1のように極板面積 S, 間隔 4d の平行板コンデンサーA,Bがある. 真空の誘電率を eo として以下の (コンデンサー・導体の挿入・合成容量) (1) コンデンサーAの容量 CA を eo, S, d を用いて表せ. (2)導体板がない状態で,電圧 V の電池でコンデンサーA,Bを別々に充電し、十分時間が経った後,電 池を取り除いた. コンデンサーA に蓄えられた電荷 QAはいくらか. (3) コンデンサー B に極板と同形で厚さ2dの導体板を図1の位置に挿入した.このとき, コンデンサー Bの容量 CB を表す式を記せ. (4) コンデンサーA内の電位分布は下の極板からの距離をæとすると図2のように表される.コンデン サーB内の電位分布を図2中に示せ. (5) A,Bのコンデンサーの同じ極性どうしを接続すると電荷はどちらからどちらに移動するか. (5)の状態のまま十分時間が経ったとき,コンデンサーの電圧はいくらか. d Vo 4d 導体板 2 d d コンデンサーA コンデンサーB 図1 ( E V = = 805 Q GOS Q:CK 80 S · 4= 4d (2) Q=Co (3) 4d 905 Vo 4a V: @x2d S Q:CV 805 CK CB = 2d" +++5 x 2d 4d 図2 (5) AB ④ 正電荷 日負荷 (6) 同じ極性つまり並列につなぐ V= CA QB CB Qn'+QB'=2QA QA = V CA QB VCB V(CA+CB):2QA v ( 205 +2805): 22k 4d+48d ※QAQである V (145) .263 Vo 49 V = Vo 品 へいれつ こしは同じ!!

回答募集中 回答数: 0
化学 高校生

(2)でC1とC2が並列接続とみなせるのはなぜですか?

462. コンデンサーの切り換え 解答 (1) 3.0×10-C, 4.5×10-J (2) 2.0×10C, 20V (3) 3.0×10-J 指針 C1, C2の上側, 下側の極板は,それぞれ導線で接続されており, スイッチSをBに切り換えた後、電荷の移動が完了すると,上側,下側 のそれぞれの極板の電位は等しくなる (図)。 すなわち, 各極板間の電圧 は等しく, このとき, C, C2 は並列に接続されているとみなせる。 解説 (1) QCVの公式から, C1 にたくわえられる電気量を Q1 と すると, Q1 = (10×10-) ×30=3.0×10-C U= = 1/2QVの公式から, C, にたくわえられる静電エネルギーを U」 と 10 U=1.1 x (3.0×10-) ×30=4.5×10-"J × すると, (2) スイッチSを切り換えたとき, C1, C2は並列接続とみなせる。C1 C=C+C2=10+5.0=15μFJ とC2の合成容量をCとすると, また,このとき, C にたくわえられていた電気量 Q1 が C と C2 に 分配されるので, C1, C2 の電気量の和は Q1 に等しい。 C1, C2の合成 コンデンサーに加わる電圧をVとすると, Q3.0×10-4 -=20 V C 15×10-6 求める C の電気量を Q1' とすると, Q1'=C,V=(10×10-) ×20=2.0×10-C V = == 05 ?整電ィネルギーをIT'Uっ とすると, S 等電位 B C₁ C2 等電位 Q² ⒸU = 1/2 CV²= 20 te 2C 電圧 用いてもよい。 別解 (2) 並列接続の 場合、電気量の比は, 電 気容量の比に等しい。 こ れを用いると, Q''=Qix- C1 C₁+C₂ 10 10+5.0 =(3.0×10-4x- = 2.0×10-4C 第V章 E 気

回答募集中 回答数: 0
物理 高校生

明治大学の過去問です。 1枚目の11と12がわかりません。3枚目は12の選択肢です。どなたか教えていただきたいです 11は-2Q/3、12はEが正解です

Ⓒ2√5 8 の解答群 √√2 2 L V6 Ⓡ L 2 〔II〕 次の文中の C [® F に与えた電気量は 描いた図は 12 √3 2 √7. 2 © L ©L G√2L 9 から 16 から一つ選び,解答用紙の所定の欄にその記号をマークせよ。 ⒸVEL に最も適するものをそれぞれの解答群 真空中に,点Oを中心とする半径R 〔m〕 の不導体球Iがある。この球の内部 は一様に正に帯電しており, 全体で電気量Q〔C〕をもつ。 クーロンの法則の比 例定数をk [N・m²/C2] とする。 (1----) 38 @ (^-^) MO 0 1. 図1のように、点Oを中心とする不導体球Ⅰより大きな半径r 〔m〕 の球面 Sを考える。電場(電界)の強さがE[N/C〕 のとき,電場に垂直な面を単位 面積あたりE本の電気力線が貫くと定めると, 球面Sを貫く電気力線の本 数Nは, S内に含まれる電気量を用いて N = 9 である。 球面S上の inpony 電場は面に垂直であるので, S上の電場の強さは は 〔N/C〕となる。 このように,帯電体の外側の電場は,帯電体を囲む曲面の内部にある電気量 4 AV で定まり、点Oに同じ電気量をもつ点電荷があるとみなすことができる。 この不導体球Iを,図2のように点Oを中心とする中空の導体球殻ⅡIで囲 10 んだ。導体球殻 ⅡIに電荷を与えて帯電させると、導体球殻ⅡIの外側の電場 Q は、点Oに電気量 200 の点電荷があるときの電場と等しくなった。導体球殻IⅡI 3 11 である。また,不導体球Iの外側の電気力線を である。 Bように、下痢止 た点での単板 と点0での電 ただし、電力の基準は無

回答募集中 回答数: 0
物理 高校生

(6)の高温熱源、低温熱源がどうのこうの というのがわかりません。

容器内の気体の圧力 P, 〔Pa] を求めよ。 3) 容器内の気体の温度 T [K] を求めよ。 この変化における容器内の気体の圧力P [Pa〕 と体積V[m²] の関係を表すグラフをかけ。 ただし, P を用いてい 15) この変化で気体が外部にした仕事〔J〕 を求めよ。 (6) この変化で気体が温度調節器から受け取った熱量Q〔J〕を求め 68.〈気体の状態変化と熱効率〉 (6) [A] 理想気体では物質量が同じであれば, 内部エネルギーは温度 で決まる量であり, 圧力や体積が異なっていても温度の等しい状 態の内部エネルギーは同一である。 このことから, 1molの理想 気体に対するか-V図(図1)に示す状態a (温度 T [K]) から状態 b (温度 T'[K]) への内部エネルギーの変化 4Uab 〔J〕 は,定積モ ル比熱Cv 〔J/(mol・K)] を用いて AUab=Cv(T-T) [9] 気体分子の運動と状態変化 51 68 p 0 数研出版 と表すことができる。 (1) 図1に示す状態 a, b とは別の状態 c (状態aと同じ体積をもち,状態bと同じ温度で ある状態)を考えることで ① 式を導け。 1/3 [B] 理想気体1mol の状態を図2のようにA→B→C→Aと変化 させる。 それぞれの状態変化の過程では, A B 外部との間で熱の出入りがないものとする B→C: 圧力を一定に保つ C→A:体積を一定に保つ ように変化させる。 状態 A, B, Cの圧力, 体積, 温度をそれぞれ (p₁ (Pa), V₁ (m³), TA (K)), (P2 (Pa), V₂ [m³), TB (K)), 〔Pa], V1 [m²], Tc 〔K〕) とする。 また, 定積モル比熱をCv 〔J/(mol・K)] 定圧モル比熱 Cp を Cp [J/(mol・K)],比熱比を y = v 気体定数を R [J/ (mol・K)] で表す。 p P₁ P₂ 図 1 0 C 等温線 V₁ 図2 B (2) 過程A→Bで気体が外部からされる仕事 WAB 〔J〕 を ① 式を用いて求め, その答えを Cv. Cp, Ta, TB, Tc の中から適するものを用いて表せ。 (3) 過程B→Cで気体が得る熱量 QBc 〔J〕 と, 過程C→Aで気体が得る熱量 Qca 〔J〕 を Cv, Cp, Ta, TB, Tc の中から適するものを用いて表せ。 V₂ V (4) 過程B→C→Aで,気体が外部からされる仕事 WBCA 〔J〕 を求めよ。 これと前問の答え とをあわせて考えると, 定積モル比熱 Cv, 定圧モル比熱 C, 気体定数Rとの間の関係 式を見出すことができる。 その関係式を導出せよ。 仕事 WBCA は、 Cv, R, Ta, Ts, Te の中から適するものを用いて表せ。 (5) 図2に示すサイクルの熱効率e を, y, pi Y2 を用いて表せ。 Pa' Vi (6) 図2のサイクルを逆向きに,すなわちA→C→B→Aの順に変化させると、 どのような はたらきをする機関となるか。 これが熱力学第二法則に反しないための条件を含めて、 100字以内で述べよ。 [22 岐阜大]

回答募集中 回答数: 0