学年

教科

質問の種類

物理 高校生

五番の回答が2個あるのは後を見すえてでしょうか? また、六番も分かりません

6 加速度運動 5. 方投射と自由落下等加速度直線運動〉 同時に動きだした2つの小球の衝突について考える。 図1、図 2のように、水平方向右向きに。 鉛直方向上向きにy軸をと る。時刻10 で 原点Oから小球Pをx軸の正の向きから角 (0°<8<90°)の向きに、速さ(0) で投げ出す。 ここでは 反時計回りを正とする。 重力加速度の大きさを」として、次の間 いに答えよ。 ただし、小球はxy面内でのみ運動し、空気抵抗は ないものとする。 まず。 図1のように小球を投げ出すと同時に、 小球Qを 標 (a,b)から静かに落下させた。ただし、40b>0 とする。 (1) 投げ出した小Pが小球Qと衝突するまでの時刻におけ る小球Pの座標を求めよ。 (2) 投げ出した小球Pがによらず小球Qと衝突するための tan を求めよ。 次に、 図2のように, 原点を通り軸の正の向きから角 (0°<a<90°傾けた、なめらかな斜面を設置した。 ただし, α は時計回りを正とする。 小球Qを原点Oに置き、 小球Pを投げ出 すと同時に小Qを静かにはなすと, 小球Qは斜面をすべり始め た。 小球 P h 18 a 図1 小球 Q 図2 小球 Q 小球 P 斜面 (3) すべり始めた小球Qが小球Pと衝突するまでの時刻における小球Qの座標を求めよ。 (4) 投げ出した小球Pが、によらず小球Qと衝突するための tan を求めよ。 6. <斜面への斜方投射> 図のように水平と角度 0 (0) をなす斜面上の原点O から、斜面と角度をなす方向に初連量の小 球を投射した。 原点から斜面にそって上向きにx軸を. 斜面から垂直方向上向きにy軸をとる。 斜面はなめらか で十分に長いものとする。 重力加速度の大きさを」とし、 空気抵抗はないものとする。 また、角度0とは <8+α < 21/2の関係を満たすものとする。 〔23 富山県大〕 (4) 小球が斜面と衝突する時刻を求めよ。 (5) 小球が斜面と衝突する点の原点からの距離を求めよ。 (6)距離が最大となる角度αを求めよ。 小球が斜面に対して垂直に衝突した場合について考える。 (7)角度αと8の関係式を求めよ。 (8) 小球が斜面に衝突する直前の速さをを用いて表せ。 7. 〈斜面をのぼる小球の運動> 水平な面(下面)の上に、高さんの 水平な平面(上面)が斜面でなめらか につながっている。 図に示すように x.y.y軸をとり、斜面の角度はx軸方向から見た断面 である。 下面上でy軸の正の向きに 軸とのなす角を0. として、質量 mの小球を速さで走らせた。 な お, 0 <6<90° かつ0 とし、小球は面から飛び上が 力加速度の大きさをgとし、 斜面はなめらかであるとす 次のアイに入る最も適当なものを文末の ウクに入る数式を求めよ。 (1) 斜面をのぼりだした小球は、x軸方向にはア る。 小球が斜面をのぼりきって上面に到達したとき ウy成分の大きさはエ(のぼりきる前 また、斜面をのぼり始めてから上面に到達するまでに 小球の進む方向とy軸とのなす角度を とすると, なる。 (2) 初速度の大きさを一定に保ちながら, 0, 0 さいうちは小球は上面に到達した。 しかし. 8, があ ずに下面にもどってきた。 このときのの満たす 0.0 のとき小球が斜面をのぼり始めてから再 クである。 ア イの選択肢 時刻における小球の位置のx座標, y座標を示せ。 時刻における小球の速度の成分 成分を示せ。 小球を投射した時刻をt=0 とし, 小球が斜面に衝突するまでの運動について考える。 小球にはたらく重力の成分 成分を示せ。 ① 等速度運動 ②加 ③ 加速度 -g cos の等加速度運動 ④ 加 ⑤ 加速度 α- sin 9 の等加速度運動 ⑥ 加 加速度 α- 9 tano この等加速度運動

回答募集中 回答数: 0
物理 高校生

(6)で磁場による力が働いているのにエネルギー保存則が成り立つ理由を教えてください

(4)(ア)から(エ)の全区間でコイルに生したジュール熱の総量を求めよ。また、この総量とコイ ルの速さを一定に保つために作用させた外力との関係を述べよ。 129. 〈斜面上を動く正方形コイルに生じる誘導起電力〉 図のように、水平面となす角度が ⑥ (0x0<)の十分 長い斜面がある。この斜面に、質量がm, 電気抵抗が R, 磁場 B JAC [21 高知大改 A D 1 m.R B M x 0 1辺の長さがdの正方形の1巻きコイル ABCD を置く。 いま、斜面にそって下向きをx軸にとる。斜面上のx≧0 この領域には、面と垂直上向きに磁場があり,その磁束密度 の大きさはxの関数として, B=kx で与えられる。 こ ここでは正の定数である。 コイルの自己インダクタンス, およびコイルと斜面の間の摩擦力はないものとする。 重力加速度の大きさをgとする。 初めに、コイルの辺BCがx軸と平行で,辺AB と辺 CD の位置が,それぞれ, x=0 と x=dになるように置いた。 この状態から, コイルを静かにはなしたところ, コイルは辺 BCがx軸と平行なまま。斜面にそって下向きに動きだした。 辺ABが位置 xにあり,速さで運動している瞬間について,(1)~(6)に答えよ。答えの式 は,m,g, R, k, x, devのうち必要なものを用いて表せ。 (1) 辺ABの両端に生じている誘導起電力の大きさ V」を求めよ。 また, 電位が高いのは端A と端Bのどちらか答えよ。 (2) コイルに生じている誘導起電力の大きさ Vを求めよ。 Xxx dayRoux よって、 E=Bwx OPの電力の大きさV[V] とれるから V-12/Baw まるようになるか OPのである。 P(W) 抵抗で R に流れる電流の大きさ であるから 受ける力の式「F= (4)の向きが②だから、フレ 仕事率(W) は、 (7) Baw Ba 131〈相互誘導〉 2 AR ファラデーの電磁誘導の法則 比較する。 が流れているコイル <コイル」を貫く磁束のは、 SISL N₁ 電流が

回答募集中 回答数: 0
物理 高校生

物理重要問題集2024 大問71番の(3)なのですが、シャルルの法則は、初期状態と状態2で一定ではないのですか。

必解 71. 〈気体の状態変化と熱効率〉 熱機関を利用して上昇, 下降するエレベータの 熱効率を求めよう。 図1のように大気中で鉛直に 立てられている底面積S〔m²〕 の円柱形のシリン ダーに質量 Mo〔kg〕のなめらかに動くピストンが ついており,中に単原子分子理想気体が封じこめ られている。 図1のようにピストンの可動範囲は ho〔m〕からん 〔m〕 までである。 重力加速度の大き さを g〔m/s2] とする。 物体 M [kg] ピストン Mo〔kg]- h [m] ho[m] 初期状態 単原子分子 理想気体 状態 2 図1 初期状態は,気体の温度が外部の温度と同じ To [K], 気体の圧力』が大気圧と同じPo〔Pa〕, ピストンの高さがん。 〔m〕である。まず、ピ ストンの上に質量 M[kg] の物体を乗せ、シリンダー内の気体に熱を与える。 しばらく静止 し続けた後, ピストンが動きだした。 この動きだしたときの状態を状態1とよぶ。 さらに熱し続けるとゆっくりとピストンは上昇し,高さがん 〔m〕 に達した。 このときの状 態を状態2とよぶ。状態2になった瞬間に物体をピストンから降ろすとともに熱を与えるの をやめた。ピストンはしばらく静止し続けたが,やがてゆっくりと下降し,高さがん [m] となったところで静止した。 さらに時間がたつとシリンダー内の気体の温度がT [K] にな ったところで初期状態にもどり、この熱機関はサイクルをなす。 (1)状態1のシリンダー内の気体の温度を求めよ。 [Pa] (2) 初期状態から状態までに気体に与えられた熱量を求めよ。 (3)状態2のシリンダー内の気体の温度を求めよ。 (4) 状態1から状態2までに気体に与えられた熱量を求めよ。 (5) 気体の体積をVとするとき,このサイクルのV図を図2にかけ。 (6) このサイクルで熱機関が外にした仕事を求めよ。 (7) このサイクルの熱効率を求めよ。 0 V[m³] 図2 (8)M=2Mo, Mo= PoS =2h の場合の熱効率の値を求めよ。 [12 弘前大〕

回答募集中 回答数: 0
物理 高校生

(3)の運動エネルギーの総和の問題で、なぜ2枚目のように解いてはいけないのですか。A,B,C,D全て同じ速さだと思うのですが...

必解 30. <あらい板上の物体の運動〉 物体 D (2m) 物体A(2m) 物体B(3m) 机 物体 C (m) 図のように, 水平な机の上に直方体の物体Aを置 その上に直方体の物体Bをのせる。 Bには物体 Cが, Aには物体Dが,それぞれ糸でつながれてお り,CとDは, 机の両側にある定滑車を通して鉛直 につり下げられている。 A, B, C, Dの質量は,そ れぞれ, 2m〔kg〕, 3m[kg], m 〔kg〕, 2m [kg] であ る。机とAの間の摩擦はないが, AとBとの間には摩擦力がはたらく。 初めにAとBを手で 固定してすべてを静止させておき, 静かに手をはなして運動のようすを観測する。 運動は紙 面内に限られるものとし, また観測中にBがAから落ちることや, Aが机から落ちることは ないものとする。滑車はなめらかで軽く, 糸は軽くて伸び縮みせず、たるむことはないもの とする。空気抵抗は無視し, 重力加速度の大きさをg 〔m/s'] として次の問いに答えよ。 BはA上をすべらずに,Aといっしょになって机の上を左へ運動する場合について考える。 (1) このときのAの加速度の大きさを求めよ。 (2)このときのAとBの間にはたらく摩擦力の大きさを求めよ。 (3)Dがん 〔m〕だけ落下したときの, A, B, C, D の運動エネルギーの総和を求めよ。 次に,Bは机の上の同じ場所に静止したままで, Aが左に運動する場合を考える。 (4) この場合の, AとBの間の動摩擦係数を求めよ。 (5)Dがんだけ落下したときの, A, B, C,D の運動エネルギーの総和を求めよ。 最後に,Aは左へ運動しBが右へ運動する場合を考える。ただし、このときのAとBの間 の動摩擦係数を1/3として、次の問いに答えよ。

回答募集中 回答数: 0
物理 高校生

高校物理力学です。なぜBにFは働いていないのですか?Bに直接Fが接していないからですか?

4-2 運動方程式の立てかた 115 質量 m F A 3 BINDING PLA-CLIP ref: 3255-464 4th 〈問4-2 滑らかな床の上に、質量が無視できる糸でつながれた質量mの物体Aと質量3 の物体Bがあり、右ページ上図のように, 物体Aを力Fで引っ張っている。物体A Bの加速度をα 糸の張力をTとして、 以下の問いに答えよ。 ただし、右向きを ステ 正とする。 41 物体Aに関する運動方程式を立てよ。 2) 物体Bに関する運動方程式を立てよ。 3)αをFとm で表せ。 2物体の運動を扱う問題です。 まずは着目する物体をAとして, 運動方程式を立て、 その後、 着目する物体をBに変えましょう。 解きかた (1) まず、物体Aにはたらく力を図示しましょう。 問4-2 a 質量 3m B 物体Aにはたらくカ 物体の加 物体Aにはたらく力は、重力,垂直抗力, F,張力Tですね。 運動方向の力は,力Fと張力Tですから, 右向きを正とするとき 物体Aの運動方程式: F-T = ma・・・ 注目する物体が 受ける力」のみで判断 正 T F (2) 物体Bにはたらく力は、重力、垂直抗力, 張力Tですから,同様に考えて 物体Bの運動方程式: T=3ma・・・ 答 NAmg ここで注目すべきは,物体Bの運動方程式には,力Fが出てきていないことです。 物体Aが力Fで引っ張られているからといって, 物体Bも力Fで引っ張られてい るわけではなく、物体Bはあくまで張力Tで引っ張られているのです。 「物体Bも力Fで引っ張られてそうだな」という思い込みは禁物です。 着目した物体にはたらく力を1つ1つ図示し, それをもとに運動方程式を立てる, これを徹底してくださいね。 人 にする 同 <解きかた (3) 立てた運動方程式を見ると, αをFとで表すには、Tを消す必要があり ます。 そこで、2つの運動方程式をそれぞれ足し合わせると 物体B にはたらく 正 NB T F=4ma F これより a= 4m では,もう一問やってみましょう。 この問題で、 着目する物体を決める重要性がわかったのではないでしょうか。 D = 1-7 3mg 物体Bに力がはたらいていると 思った人は要注意じゃ はたらく力を図示するステップを踏めば、 間違いは減るぞい W!! Aは糸からも 引っ張られておるぞ 4 物体Bには Fははたらいて いないんだね

回答募集中 回答数: 0
物理 高校生

問題(エ)で2倍になる理由がわかりません。点Pは初めて極大になるから(L1-L2)=mλから一倍になるのではないのでしょうか?説明お願いします。

問5 次の文章中の空欄 物理 エ に入れる語と数値の組合せとして最 も適当なものを後の①~⑥のうちから一つ選べ。 6 図6のように、振幅, 波長の等しい音を同位相で発している小さいスピー カー A, B がある。 Bの位置を通り, A, B を結ぶ直線に対して垂直な直線 上で, Bから離れる向きにゆっくりと進みながら音の大きさを観測した。 た だし,各スピーカーからの音の大きさは距離によって変化しないものとし, 反射音などはないものとする。 また, A, B からの音が強め合うときに,観 測される音は極大になるものとする。 A P 図 6 A Bの位置から進むと, 点Pではじめて音の大きさが極大となり,さらに 進むと,点Qで2回目に音の大きさが極大となったが,その後, 進み続け ても音の大きさは極大にならなかった。 この間, 音を観測する点でのAか らの距離とBからの距離の差の大きさは, Bから離れるにしたがって ウ なる。また、点PでのAからの距離とBからの距離の差の大きさ は, A, B が発する音の波長の I 倍である。なお, 図6 中の BP, BQ の長さは正しいとは限らない。 610 ウ H ① 小さく 1 小さく 2 小さく 3 大きく 1 (5 大きく 2 (6 大きく. 3 -7- ばれた図形の面 40.

回答募集中 回答数: 0
物理 高校生

(3)の解説の変化量のところがわからないです。変化量はどうやって出しているのですか

したがって, 比熱の比は、 例題 S 混合気体 ~ Sast 9912 (5)融解曲 25 29 容積 2.0L, 4.0Lの容器 A, Bが,図のよ うに連結されている。 容器Aにはメタン, 容 器Bには酸素を入れて,ある温度にすると, 圧力はそれぞれ3.0×105 Pa, 6.0×105 Pa だった。コックを開けて気体を混合し、点火 して完全に反応させた後, 元の温度に戻した。 連結管やコック,および, 生じる水 の体積や、水蒸気の蒸気圧は無視してよい。 分子量 CH4=16.0,O2=32.0 点火装置 容器B A 20 想気 (a) f 2.0L 4.0L コック (b) 2 の の (c)】 (1) 反応前の混合気体中のメタンの分圧は何 Paか。 (d) (2) 反応前の容器内の全圧は何Paか。 (3) 反応後の容器内の全圧は何Paか。 KeyPoint 点火前後で温度一定: メタンと酸素のそれぞれにボイルの法則が成立する。 同温同体積 : 圧力比は物質量比に等しい。 ●センサー ●温度一定より, ボイル の法則 piVi=P2V2 ●全圧=分圧の和 ●同一容器内の気体の圧 力比は物質量比に等し い。 →反応による変化量を 圧力で示す。 重要 (1) C 解法 (1) (2) 気体についてボイルの法則が成立する。 混合 後の各気体の分圧を PCH4, Po2 とすると, 混合気体の体積は 6.0Lなので, (2 CH4 : 3.0×10 Pa×2.0L=PcH.〔Pa〕×6.0L PcH=1.0×105 Pa O2 :6.0×10 Pa×4.0L=po〔Pa〕×6.0L Po2=4.0×10 Pa 全圧は,1.0×105 Pa+4.0×10°Pa=5.0×10 Pa (3) 反応前後の物質の量的関係を分圧で考える。 08. CH4 +202 CO2 +2H2O (s) 反応前 〔Pa〕 1.0×105 4.0×100005 変化量〔Pa〕 -1.0×10 -2.0×105 反応後 〔Pa〕 0 2.0×105 1.0×105(無視) 反応後の全圧は、2.0×10 Pa+1.0×105 Pa=3.0×10 Pa 解答 (1)1.0×10 Pa (2)5.0×10 Pa (3)3.0×105 Pa [mL〕| | ル・シャルルの法則 重要

回答募集中 回答数: 0
1/6