学年

教科

質問の種類

物理 高校生

オレンジ並み線の部分です 10t=2分の1×0.50t2乗ではダメですか?

知識 16 応用例題1等加速度直線運動と相対速度 止まっていた自動車Aが一定の加速度で走り始めた。Aが走り始めた瞬間に,Aの 横を10m/sの一定の速さでAが動く向きに走ってきた自動車Bが追い越していった。 Aは走り始めてから 100m 走ったところでBと同じ速度になった。 Aの加速度の大きさはいくらか。 (2)AがBに追いつくまでの走行距離を求めよ。 (3)AがBに追いついたとき,Aから見たBの相対速度を求めよ。 ! センサーフ 時刻 t = 0 に位置x=0を 同時に通過 (出発) したもの として考える。 解説 自動車 A が走る向きをx軸の正の向きとする。 v=0 加速度 α a →10m/s -100 m- 10m/s を であ (1) 23 (3) 知識 17 上泉 上昇1234 →UA グラフ (1) (2) (3) →10m/s グラフ (4) v[m/s] 自動車A- 自動車B 10 DOD B -x (m]- 知識 (1)Aの加速度をα[m/s] とすると,ぴ-v=2axより, 10°-02=2a×100 ゆえに,a= 0.50m/s2 (2)A が発進してから自動車Bに追いつくまでの距離を x[m], かかった時間を [[s] とすると, 1 2 A について, x=vot+=aťより,x=0+≒×0.50t…① Bについて, x=vtより, x=10t 0+1/2×0.50 [発展] 18 船 (1) (2) …② t[s] 式 ①,②よりを消去すると, x= 速度が同じ ると、よ=1/2x0.50×(赤)~ IC 知 グラフ 1 になる時刻 AがBに追い つく時刻 x(x-400)=0 ゆえに、x=400m (x=0は不適) 物 三角形と長方形の面積が等しく なる時刻にAがBに追いつく (3)追いついたときのAの速度をva [m/s] とすると, v=2ax より vA-02=2×0.50×400 ゆえに,ひA=√2×0.50×400=20m/s Aから見たBの相対速度を v^B [m/s] とすると, VAB=UB-VAより, VAB=10-20=-10m/s よって,進む向きと逆向きに10m/s (1 (2

解決済み 回答数: 1
物理 高校生

黄色マーカーのところなんで-gなのですか?

x 解説動画 発展問題 48, 52 発展例題5 斜面への斜方投射 物理 Vo 図のように、傾斜角 0 の斜面上の点0 から, 斜面と垂直な 向きに小球を初速 で投げ出したところ, 小球は斜面上の 点Pに落下した。重力加速度の大きさをg として,次の各問 答え 0 OP (1) 小球を投げ出してから、斜面から最もはなれるまでの時間を求めよ。 (2) OP 間の距離を求めよ。 思考 44.2 球 達した た。 こ 小球日 t=0, とし 指針 重力加速度を斜面に平行な方向と垂 直な方向に分解する。 このとき, 各方向における 小球の運動は,重力加速度の成分を加速度とする 等加速度直線運動となる。 1 0=vot₂-9 coso.tz² (1) (2) (4) 0=t Vo 解説 200 (1) 斜面に平行な方向 にx軸, 垂直な方向に y軸をとる(図)。重力 加速度のx成分,y成 分は,それぞれ次のよ うに表される。 20から, t2= gcoso gsino 45. -gcose, g ら, OP間の距離 xは, P x= x方向の運動に着目すると, x= -gsinO・2 か -129sin0-13-12 gsing-(20)* げ gcoso x成分: gsin y 成分:-gcosd 方向の運動に着目する。 小球が斜面から最も はなれるとき,方向の速度成分 vy が 0 となる。 求める時間をとすると, vy=vo-gcoso・t の式から, Point 2vtan0 gcose m ( 方向の等加速度直線運動は, 折り返 し地点の前後で対称である。 y=0から方向 の最高点に達するまでの時間と,最高点から再 びy=0に達するまでの時間は等しく, (D) 4 0=vo-gcoso・t t₁ = Vo gcoso (2) Py=0の点であり, 落下するまでの時間 t2=2tとしてtを求めることもできる。 を友として,「y=vot-1/12gcost・12」の式から、 発展問題 [知識] A 43. 投げ上げと自由落下 図のように,高さ19.6mのビルの 屋上から 小球Aを真上に速さ14.7m/s で投げ上げた。 小球 Aは,投げ上げた地点を通過して地面に達した。 重力加速度の 大きさを 9.8m/s2 として, 次の各問に答えよ。 14.7m/s A B (1) 小球Aが地面に達するのは,投げ上げてから何s後か。 19.6m

解決済み 回答数: 1
物理 高校生

なぜ電圧が等しくなるのでしょうか?

電気容量 2.0F, C2=3.0μF の2つのコンデンサー, V=2.0×102V の電池, スイッチ Si, S2 を用いて,図の回 路をつくる。 S, を閉じて Cのコンデンサーを充電したの Sを切り、次に S2 を閉じて十分に時間が経過した。 C. C2のコンデンサーは,はじめ電荷をもっていなかった 200 203, 200 S₁ Sz/ C₁ C2 = とする。 C. C2 のコンデンサーにたくわえられた電荷はそれぞれ何Cか。 S, を切ってからSを閉じる前の Cの電荷をQとし, 求めるC,, C2 の電荷を Q.. Q2 とする。 電池を切りはなして S2 を閉じるので, 電気量保存の法則から、図の破線で囲まれた部分 この電荷は保存される。 すなわち, QQ,+Q2 で ある。 また, C, C の上側、下側の極板は, それ それ導線で接続されており、電荷の移動が完了す S2 C +Q C 5 ると,上側, 下側のそれぞれの極板の電位は等し くなる。 すなわち, 各極板間の電圧は等しい。 ■解説 S を閉じたとき, C1のコンデンサ ーにたくわえられる電荷をQ とすると, Q=CV=(2.0×10-) × (2.0×102) =4.0×10-4C S, を切り, S2 を閉じた後の C, C2 のコンデンサ 一の電荷を, それぞれ Q1 Q2 とする。電気量保 存の法則から, Q1+Qz=4.0×10-4 ... ① また,各コンデンサーの極板間の電圧は等しい。 なんで Q2 Q₁ S2 +Q₁ +Qzl == ..2 2.0×10-6 3.0×10-6 -Q₁ -Q2C 2 理すると, 式 ② から, Q2=3Q1/2となり, 式① に代入して整 Q=1.6×10-C, Q2 = 2.4×10-C 13. コンデンサー 145

回答募集中 回答数: 0