学年

教科

質問の種類

数学 高校生

1番です。記述に問題ないですかね?

128 基本例題 77 2次関数の最大・最小(2) 次の関数に最大値、最小値があれば,それを求めよ。 (1) y=2x²-8x+5 (0≦x≦3) (2)y=-x²-2x+2 (-3<x≦-2) p.126 基本事項 [②2] 重要 88, 演習 130, 指針 2次関数の最大・最小には, グラフの利用が有効。 特に、定義域に制限がついた場合は, グラフの頂点(軸)と定義域の端の値に注目する。 ① 基本形y=a(x-p' + q の形に変形する。 (1) (2) 2② 定義域の範囲でグラフをかく。 ③頂点(軸x=p) と定義域 (h≦x≦k など)の位 置関係を調べる。 4 頂点のy座標, 定義域の端でのyの値を比較 して, 最大値・最小値を求める。 CHART 2次関数の最大・最小頂点と端の値に注目 解答 (1) y=2x²-8x+5=2(x²-4x+22)-2・22+5 =2(x-2)^-3 また x=0のとき y=5, x=3のときy=-1 よって, 与えられた関数のグラフは右内で の図の実線部分である。が上に凸で ゆえに x=0で最大値 5, x=2で最小値-3 (2) y=-x2-2x+2 =-(x+2x+12 ) +1・12+2 =-(x+1)^+3 また x=3のとき y=-1, x=-2のときy=2 よって, 与えられた関数のグラフは右 の図の実線部分である。 ゆえに x=2で最大値 2,グラ 最小値はない。 5 最大 0 2 -1 -3 最大。 最小 -3 -2-1 NESTY'S ********. 最小 オ 00000 ⑩0x P k 最大 h k|p 軸x=2は,定義域 0≦x≦3の内部にある。 グラフをかくとき, 定義域 の内部にある部分は実線 , 外部にある部分は点線でか くとわかりやすい。 なお, (1), (2) のグラフの端点で, ●はその点を含み, 〇はそ この点を含まないことを意味 する。 <軸x=-1は, 定義域 -3<x≦-2の外部にあ <x=-3は定義域に含まれ ないから、 最小値はない。

未解決 回答数: 1
1/7