学年

教科

質問の種類

数学 高校生

18(2)がわかりません 解説お願いします

[18 [2021 九州大] 座標平面上の3点 0 (0, 0), A (1, 0), B(0, 2) を考える。 (1) 三角形 OABに内接する円の中心の座標を求めよ。 (2)中心が第1象限にあり, x軸と軸の両方に接し, 直線ABと異なる2つの交点を もつような円を考える。 この2つの交点をP, Q とするとき, 線分 PQ の長さの最大 値を求めよ。 (2)円の半径をR とすると, 中心の座標は (R, R) である。 直線AB の方程式は y=-2x+2 すなわち 2x+y-2=0 よって、円の中心と直線ABの距離をとす ると d= 12R+R-21_13R-21 = √√22+12 √5 円が直線AB と異なる2つの交点をもつとき, d<Rであるから |3R-2| √5 <R 両辺は正であるから, 両辺を2乗して整理す ると R2-3R+1<0 B≤0 よって 3-√5<R<3+√5 ① 2 2 このとき,三平方の定理により d+ =R2 よって PQ2_16 16 (R2-3R+1) 5 右辺を整理して PQ-16-232-24 B2 2 P (R, R) 1 A x 422-4123R+1) 1228-4 PQZOであるから,R=2のときPQも最大で,最大値は したがって、①においてPQはR=2のとき最大値-18(-2)=4をとる。 2 すなつ よって, cは−1の約数となり ゆえに,f(-1) = 0から すなわち a²-262-1=0 (1) より α2=3m+1,62=3n よって 3(m-2n)=2 m-2n は整数であるから, 2 したがって、f(x) =0を満た (3) f(x)=0 の有理数解, は有理数であるから,互い p0 である。 更に,(2)よりは整数では f(r)=0 から 2m3+azy2+ すなわち よって したがって 2(2)² + a² 2q3+apa d2a2+a2 pgは互いに素であり、 ①に代入して整理すると すなわち 2=pp²+ よって、 は2の約数とな ②に代入して整理すると すなわち (a+26Xa a,b は整数であるから, よって (a+2b, e したがって (a, b)=( これらは a, b が3の倍

解決済み 回答数: 1
数学 高校生

数学の大学入試の問題です 6(2)がわかりません。 解説お願いします

を 6 [2021 神戸大] a を実数とする。 xの2次方程式x2+(a+1)x+α2-1=0について,次の問いに答えよ。 1個のさい (1)この2次方程式が異なる2つの実数解をもつようなαの値の範囲を求めよ。 に出た目の (2)(1)で求めた範囲で動かすとき,この2次方程式の実数解がとりうる値の範囲を162> 標を 求めよ。 (2) 2次 (3) 2次 い。 3 ≥2 2'2b b 3 √3 等号が成り立つのは、 2-26 = 2 のとき、すなわち、 ✓のときであり、 これ 6 は b1 を満たす。 1 このとき②より すなわち a=+- √2 したがって, La= で最小値をとる。 6 [2021 神戸大] 率を求 11 [20 αを正 (1)の2次方程式x2+(a+1)x+α-1=0 の判別式をDとすると,D>0となること が条件である。 D=(a+1)2-4(q2-1)=-3a2+2a+5 =-(a+1)3a-5) (1) せ (2) (3) あるとき 表す。 D>0 から (a+1X3a-5)<0 よって、求めるαの値の範囲は -1<a< ...... ① (2)与えられた方程式をαについて整理すると a2+xa+x'+x-1=0 のと 14は素数でない。 これをαの2次方程式とみて、 ①の範囲に解をもつ条件を調べる。 f(a) =a2+xa+x²+x-1とおくと +2x'+x-1 数 6 y=2x から 放物線y=f(a)の軸は,直線である。 を a-t² [1] 1 すなわち2のとき f(-1)=x20 ようなCの接線の本数と一致する。 であるから, ①の範囲には解をもたない。 2-1-(-1)=a²+1>0 [2]11/3 すなわち -から, 点Aを通るようなCの接線 10 <x<2 ② Cの接線の方程式は,(1)より、 にする ことから, = 2ap+1, のとき、①の範囲に解をもつ条件は,f(-1)>0であるから ゆえに を通ることを示している。 二、 直線 PQ の方程式である。 すなわち +*+*-150 (x+2)(3x-2)≤0 (-2)50 よ。 って -2515 これは②を満たす。 x-- 16 (8)=x+1/+18=(x+1/3)20 であるから、①の範囲には解をもたない。 [1]~[3] から, 求めるxの値の範囲は -2515

解決済み 回答数: 1
数学 高校生

なぜ(x−a/3)の2乗で割り切れるのでしょうか?(x−a/3)で割り切れるのはわかります。でも(x−4/3a)の2乗になる時もあると思うんですが、、 計算するまで分かんなくないですか、、教えてくださいお願いします。

基本例 223 係数に文字を含む3次関数の最大・最小 αを正の定数とする。 3次関数f(x)=x-2ax2+ax≦x≦1 における最大 基本 219 重要 224 値 M (α) を求めよ。 [類 立命館大 ] 指針 文字係数の関数の最大値であるが, p.350 基本例題 219 と同じ要領で,極値と区間の 端での関数の値を比べて最大値を決定する。 f(x) の値の変化を調べると, y=f(x) のグラフは右図のよう になる(原点を通る)。ここで,x=1/3以外にf(x)=f(1/3)を 満たすx (これをαとする) があることに注意が必要。 よって、1/3,α (1/3 <α)が区間 0≦x≦1に含まれるかどうか で場合分けを行う。 YA O Halm aax 3 f'(x)=3x2-4ax+α²=(3x-a)(x-a) 解答 f'(x) = 0 とすると a x= a α > 0 であるから, f(x) の増減表は次のようになる。 a x ... 2-3 f'(x) + 0 a 0 +(0) f(x) 極大 極小>>(0) ここで,f(x)=x(x2-2ax+α²)=x(x-a)' から 2 2 4 ƒ(3) = (-a)² = 17a³, ƒ(a)=0 x=1/3以外にf(x)=1/27 を満たすxの値を求めると, f(x)=から 4 x-2ax2+ax- x-a-03 まずは, f'(x)=0を満た すxの値を調べ, 増減表 をかく。 <a>0 から 0<<a 3 * 曲線 y=f(x) と直線 y=は,x=1/2の 点において接するから, f(x)/(x) で割り切れる。このこと を利用して因数分解する とよい。 23 27 ゆえに (1/3)(x-/1/30) 0 (*) 1-0 1-2a a² 1283 aa 5 a² 3 9 27 4 a³ xキ x= 1/32 であるから x= a 5 4 a 1 a 02 0 よって, f(x) 0≦x≦1における最大値M (α) は,次のよ うになる。 3 9 a 4 92 3 9 4 1 [1] 1</1/3 すなわち α>3のとき,[1] a 0 3 f(x) は x=1で最大となり M(a)=f(1) a2-2a+1 -最大 指針」 [1] は区間に極値をとる xの値を含まず,区間の 右端で最大となる場合。 ★の方針。 O 0

解決済み 回答数: 1
数学 高校生

赤いマーカーがされているところは暗記でしょうか? なぜマーカーのところが成り立つのかわかりません

「苦手 66 第3章 2次関数 基礎問 38 最大・最小 (IV) yがすべての実数値をとるとき, z=x²-2xy+2y2+2c-4y+3 について、 次の問いに答えよ. (1)yを定数と考えて, xを動かしたときの最小値をyで表せ (2)(1)のmにおいて,を動かしたときの最小値を考えることで ぇの最小値とそのときのx,yの値を求めよ. 変数が2つ(xとy)ありますが, 37のように文字を減らすこと 39 最大 4 △ABCにお 上に AD=xと 垂線 DE, DF (1) 長方形 DE (2) Sの最大値 精講 できません。このような場合でも,変数が独立に動くならば、 の文字を定数と考えることによって,最大値や最小値を求められます 精講 長方形の いのです 解答 (1) z=x2-2(y-1)x+2y2-4y+3 ={x-(y-1)}-(y-1)2+2y2-4y+3 ={zx-(y-1)}2+y^-2y+2 (1) AD: DF = 式をxについて整理 ◆平方完成 よって,m=y-2y+2 また, BD (5-x): I S=DF- x=0,y=1のとき 最小値1をとる. (2)m=y-2y+2=(y-1)2+1を動かしたときの式 .z={z_(y-1)}+(y-1)2+1 {x-(y-1)}2≧0, (4-1)2≧0 だから x(y-1)=0 かつ, y = 1, すなわち (2) DF>0, A,Bが実数のとき 12 S= 25 A2+B2≧0 よって、 等号は A=B=0 きりたつ その2つの内かりならば ポイント Z={0}+0+1 最小値1とわか 2変数の関数の最大・最小を求めるとき,それらが独 立に動くならば、片方を定数と考えてよい ポイント 演習問題 39 演習問題 38 x, y がすべての実数値をとるとき, 3.x'+2xy+y^+4m-4y+3の最小値を求めよ. 右図 長方形 面積S

解決済み 回答数: 1