学年

教科

質問の種類

数学 高校生

どうして、底を2にするんですか??

重要 例題 38 ant = pa," 型の漸化式 | a1=1, an+1=2√an で定められる数列{an} の一般項を求めよ。 00000 【類近畿大 指針 がついている形, an² や an+13 など 累乗の形を含む漸化式 an 解法の手順は an+1=pa ① 漸化式の両辺の対数をとる。 an の係数かに注目して、底がりの対数を考える。 10gpan+1=10gpp+logpang すなわち 10gpan+1=1+glogpan 2 10gpan=bn とおくと bn+1=1+gbn → -logeMN = logM+log.N loge M=kloge M bn+1=bn+▲の形の漸化式 (p.464 基本例題 34 のタイプ)に帰着。 対数をとるときは, (真数)>0 すなわち a">0であることを必ず確認しておく。 CHART 漸化式 αn+1=pan" 両辺の対数をとる α=1>0で,n+1=2√an (>0) であるから,すべての自 解答然数nに対してan>0である。 よって, an+1=2√an の両辺の2を底とする対数をとると 10gzAn+1=10g22√an log2an+1=1+110gzan 2 bn+1=1+1/26n ゆえに 初 10gzan=bn とおくと これを変形して bn+1-2=(bn-2) ここで b1-2=10g21-2=-2 > 0 に注意。 厳密には,数学的帰納 で証明できる。 log₂(2.an) =log22+ log. 特性方程式=1+10 基本 α=2, (1) n (2) ar 指針 解答 よって, 数列 {b,-2} は初項 -2,公比 1/2の等比数列で n-1 b-2=-20 =-2(12) - すなわち bn=2-22- を解くと α=2 12 したがって, 10gzan=2-22 から an=22-22- \n-1 =21- logaan-pan-d 早 検 PLU anan+1 を含む漸化式の解法 実討 anan+1 のような積の形で表された漸化式にも 例えば 両辺の対数をとるが有効である。 LON

未解決 回答数: 1
数学 高校生

赤線を引いたところが数学的になぜ言えるのか分かりません。感覚的には分かるのですが… また、x軸、y軸、y=x、原点対称の媒介変数表示された曲線は赤線のことが言えるのでしょうか。

例題 C2.78 いろいろな曲線(2) 3 媒介変数表示 (517) **** x=cos't tを媒介変数とするとき, 曲線 ly=sin't の概形をかけ. [考え方 例題 C2.77 で求めたアステロイドである。 対称性を利用すると、右のようにOSIST の範囲 概形を調べれば、全体をかくことができる. yy=x/ cost, sint の周期は2mであるから, 0≦t≦2 の範囲で 解答 考える.t=0,0,0, 2-0 に対応する点をそれぞ P,Q,R, S とし,P(x,y) とすると、sinx, c030 x=cos0y=sin'0 cos(0)=-cos'0=-x, sin (n-0)=sin0=y したがって,Q(x, y) より,この曲線はy軸に関して対称 cos(n+0)=-cos0=-x, sin(n+0)=-sin'0=-y したがって,R(-x, -y)より,この曲線は原点に関して対称 cOS (2-0)=cos' Q=x, sin (2-0)=-sin0=-y したがって, S(x, -y) より,この曲線はx軸に関して対称 4 まず対称性を調べ P 0 R さらに,t= .0 に対応する点をP(x, y) とすると, x 軸対称 *y 軸対称 π 2 =cos (46)=sin {(10)}= sin(+0) 4 4 y=sin (6) =cos -6)=cos π 2 (4-0)} =cos (+0) 原点対称 *y=x に関して 称 の4つの対称性が したがって,t=7 +0 に対応する点TはT(y.x) となる.かる. すなわち、この曲線は直線 y=x に関して対称である。 T よって、この曲線の≦ts の範囲の概形を調べる. y y=x/ π π t0. 6 3√3 v2 81-8 x14 y0 > したがって、上の表より, 相当する 24点を定めると右のようになる。 よって、Ot2 における曲線の 概形は右の図のようになる. 4 42 12/ TC 4 22 260 √2 2 40 0 44 OPの長さを求め と次のようになる t 0 √7 OPの長さ 1 4 1671 練習 [x=sint の概形をかけ、 •p.C2-170 C2.78] を媒介変数とするとき、曲線 = sin2t ****

未解決 回答数: 0