学年

教科

質問の種類

数学 高校生

なぜ、部分分数分解をする時、赤い丸のところのように分子の次数を分母の次数より1下げるのですか?回答よろしくお願いします。

次の不定積分を求めよ。 2x2-x-2 -dxh (1) x+1 (2) S dx (x+1) (2x+1) (3) a √ x²(x-1) dx 思考プロセス (1)~(3) いずれも f'(x) f(x) -の形ではない。 次数を下げる (1)ReAction(分子の次数) ≧ (分母の次数)の分数式は、除法で分子の次数を下げよ IB 例題 17 (2)(3)分母が積の形 (x+1) (2x+1) +1)(2x int (2) 1 (3) x² (x-1) 八 数分解 a + x+1 2x1 子 (x)=xh(x)}(水)1 a, b, c の値を求める。 ax+b x2 C + a b + C x-1 x + x² x-1 Action » 分数関数の積分は、子の次数を下げ, 部分分数分解せよ 2 (1) S 2-x-2 dx = √(2x-3+x1)dx x 2 -3x + log|x +1+C_3 4 章 分子を分母で割ると 商2x-3, 余り1 不定積分 IIB 1 IIB 61 (x+1)(2x+1) はらうと a b + とおいて, 分母を 部分分数分解 x+1 2x+1 α(2x+1)+6(x + 1) = 1 (2a+b)x+a+6-1=0 係数を比較すると,a=-1,6=2 より dx (x+1)(2x+1) =+ S ( x + 1 + 2x²+ 1 ) dx +1)αx -log|x + 1|+log|2x + 1| + C 2x+1 =log| +C x+1 IB 61 (3) 1 a b C = + + とおいて, 分母をはら x²(x-1) x x² x-1 うと ax(x-1)+6(x-1)+cx2 =1 (a+c)x2+(-a+b)x-6-1 = 0 係数を比較すると,a = -1, b = -1, c = 1 より S dx x(x-1) = S ( = = = = = 1 + x2 x-1 11) dx == -log|x|+ x 1/1/+1001+0 +log| 142次の不定積分を求めよ。 1 +log|x-1|+C +C pal (2a+b)x+α+6-1 = 0 はxについての恒等式で あるから f2a+b=0 la+6-1=0 (1) S 2 -dx 2x+1 =2.1/ = 2.1 log|2x+1|+C 部分分数の分け方に注 意する。 xについての恒等式であ るから fa+c=0 {-a+b=0 l-b-1=0 yolx (E) dx 3x+4 dx (3) rr+12

解決済み 回答数: 1
数学 高校生

この問題で、接線を写真のように置くか、接点を解答のように置くか迷ったのですが、どう判断すればよいですか?回答よろしくお願いします。

例題 D 出 不★★☆☆ 点(α, 0) から曲線 y=logx に異なる2本の接線を引くことができると 定数αの値の範囲を求めよ。 ただし, lim- t 0 を用いてよい。 (1) 817 点 (t, logt) における接線を1とすると 点(α, 0)から→ l が (a, 0) を通る →t と αの方程式 - 【 接線が2本 → 接点が2個 対応を考える «ReAction 接点が与えられていない接線は,接点を文字でおけ 例題 34 () tについての方程式と →みて、異なる2つの 実数解をもつ → tが2個 3 (logx)'= = よりの傾きはあり 1 x ( 章 t₁ t2 接点が異なる 接線の傾きが異なる 接線が異なる Action» 接線の本数は、接点の個数を調べよ 思考のプロセス いろいろな微分の応用 接点をP(t, logt) (t > 0) とおくと、点Pにおける接線の真数条件 moiinA 例題 84 方程式は y-logt = =(x-t) これが点(a,O)を通るから, 0-logt = 1/2(a-t)より y' = 1 x t(1−logt) = a ・① であるから、接点が異なれば接線も異なる。 よって、接点の個数と接線の本数は一致する。 ゆえに、tの方程式 ① は異なる2つの実数解をもつ。 f'(t) =-logt f(t) = t(1-logt) (t > 0) とおくと f'(t) = 0 とするとt=1 ここで,logt = -s とおくと, t→+0 のとき s→∞ となり 1 y' x ol (U) 014 12130-(笑) t (0) 両辺に掛ける。 キのとき 1 1 -キーより, 接点が異 t₁t2 なれば接線の傾きも異な る。 (x) limtlogt = lime*(-s)=i(-1/2)=0 S (S) よって limf(t) = 0 YA また, limf(t) = =-- ∞ であるから, 1- y=a 817 2本の接線を引いた図 例題 118 増減表とグラフは次のようになる。 1 0 e t t 0 ... 1 ... f'(t) f(t) + 0 7 1 y=f(t) ①の実数解は,曲線 y=f(t) と直線 y=αの共有点の 座標であるから, 異なる2つの共有点をもつとき,定数 の値の範囲は 0 <a< 1 Oa y=logx 本の接線が引けるとき, 定数 αの

解決済み 回答数: 1
数学 高校生

この問題でx=0で微分可能でないことは、計算して求めますか?解答には、計算式が書いてなかったのですが、x=0で微分可能でないことはすぐわかることなのですか?回答よろしくお願いしますm(_ _)m

関数y=|x|√x+2の極値を求めよ。(笑) ReAction 関数の増減は、 導関数の符号を調べよ IIB 例題220 ③開 noboA 思考プロセス 場合に分ける xの範囲 (定義域に注意) xx+2 |x|√x+2= ] のとき)← -x√x+2 それぞれ微分を考える ] のとき) 絶対値記号を含む関数の注意点 ・・ 関数が微分可能でない点で極値をとる場合が ある。 y to 例 x=0で微分できないが極小 y=|x| y 例題 よって, x>0 66 X y′ = √x +2 + 定義に戻る 極小・・・ 減少から増加に変わる点 極大・・・ 増加から減少に変わる点 解この関数の定義域は,x+2≧0 より x≧-2 (ア) x≧0 のとき y=x√x+2 減少 増加 x 極小 By = |x|√x+2は x=0で微分できない。 Point参照。 2√x+2 3x+4 2√√x+2 >0 (イ) −2≦x< 0 のとき y=-x√x+2 3x+4 よって, -2<x< 0 のとき y' 関数の微分は定義域の 端点 x=-2では考えな 2√x+2 y=0 とすると 8 -2 ... 4 43 : 0 x=- い。 |極大 4√6 YA 19 3 + 0- + (ア)(イ) の増減 表は右のようになる。 4√6 y 0 > 7 07 9 よって、この関数は x=- 4 -1 のとき 極大値 3 46 9 x = 0 のとき 極小値 0 -24 0 x=0 のときy' は存在 しないが, x= 0 の前後 で減少から増加に変わる から、極小となる。 x 極小 lim Point... 微分可能でない点と極値・ 関数f(x)=|x|√x+2 において XITO f(x)-f(0) = =√2, lim == -√2 f(x)-f(0) 300= x-0 x-0 m 微分可能でない。 しかし, x = 0 の前後で f'(x) の符号

解決済み 回答数: 1