学年

教科

質問の種類

数学 高校生

大問105だけ、はさみうちの原理使ってるんですけど、使うときと使わない時の判断ってどうやってるんですか?式のどの部分を見たら「はさみうち」使って解く!って分からんですか?

第2章 極限 三角関数と極限 1 関数の極限と大小関係 limf(x) =α, limg(x) =β とする。 xa pix 1 xがαに近いとき,常に f(x) ≦g(x)ならば a≦β 2xがαに近いとき,常に f(x) (x)g(x) かつα=β ならば limh(x)=a 注意 上の事柄は,x→∞, x→∞の場合にも成り立つ。 ■ 次の極限を求めよ。 [104, 105] 1-cos 3x □ 104(1) lim x→0 x2 1 *105(1) limxcos 0+x x 第2節 関数の極限 31 0 (2) lim sinx2 x01−cosx (2) lim 1+sinx XII∞ x 第2章 極限 注意2を「はさみうちの原理」 ということがある。 例題 3 limf(x)=∞ のとき,十分大きいxで常に f(x)≦g(x) ならば limg(x) =∞ |2 三角関数と極限 sinx lim x0 x x =1, lim -1 (角の単位はラジアン) x-0 sinx STEPA 中心が 0, 直径 ABが4の半円の弧の中点をMとし, Aから出た光線 が弧 MB 上の点Pで反射して, AB上の点Qにくるとする。 (1) 0=∠PAB とするとき, OQ の長さを0で表せ。 (2) PBに限りなく近づくとき, Qはどんな点に近づいていくか。 |指針 Aから出た光線か MB上の点Pで反射して, AB上の点Qにくるとき ∠OPA = ∠OPQ sin O 求めるものを式で表し、 などの極限に帰着させる。 解答 (1) 右の図において ✓ 99 次の極限を調べよ。 ZOQ= ∠OPA=∠OAP=0 ∠PQB= ∠PAQ+ ∠APQ=30 M 2 (1) lim cos- *(2) lim (3)lim x tanx x–0 sinx よって ∠OQP=30 △OPQに正弦定理を用いると,P=2 であるから 30 0 Q B ■次の極限を求めよ。 [ 100~103] ✓ 100 (1) lim x→0 sin 4x XC sin2x *(2) lim x-0 sin5x (3) lim x-0 tant sin3x tan2x-sinx □ 101 (1) lim- *(2) lim x→0 x 1-cos 2x x-0 xsinx (3) lim x→0 sin3x+sinx sin2x □ 102(1) lim COS X x-Sin2x (2) lim- sin2x (3) lim x01−cosx 103*(1) lim tan x X10 x *(4) lim- sinлx x-1 x-1 1−cosx t- sinx STEPB *(2) lim X→π OQ 2 sin O sin(-30) また, sin (π-30)=sin30 であるから 2sin OQ= sin 30 (2)PがBに限りなく近づくとき, 0 +0 である。 このとき 2 sin 2 sin 3 2 lim OQ= lim lim 8+0 o sin 30 0-40 3 0 sin 36 3 よって,Qは線分 OB上の0からの距離にある点に近づいていく。圏 □ 106 半径αの円周上に動点Pと定点Aがある。 Aにおける接線上に AQ=AP であるような点Qを直線OAに関してPと同じ側にとる。PがA PQ に限りなく近づくとき, AP の極限値を求めよ。 ただし,Pは ∠AOP (0<< AOP < 1)に対する弧AP の長さを表す。 sin(x-7) x-π (3) lim x-- tanx xn ax+b 1 sin(sinx) (5) lim x→0 sinx 1 107 等式 lim (6) limxsin COS x 2x が成り立つように, 定数a, b の値を定めよ。

未解決 回答数: 1
数学 高校生

明日テストなので、至急ではないのですが、回答していただけると嬉しいです!! (2)です。解説見ても解き方分からないので教えて欲しいです。 特に黒丸をつけた重解ら辺が分かりません。 4mはどこからきたのか、2・5はなにか、を中心に教えてもらえると助かります。

練習 28 x+y^2=5と直線 y=2x+mについて, 次の問いに答えよ。 教 p.99 (1)円と直線が共有点をもつとき, 定数mの値の範囲を求めよ。 (2)円と直線が接するとき, 定数の値と接点の座標を求めよ。 針円と直線の位置関係 円の方程式と直線の方程式からyを消去して,xにつ いての2次方程式を作る。これを解くと, (共有点があれば) 共有点のx座標 が求められるが,円と直線の位置関係を知るには,この2次方程式の判別式 Dの符号を調べればよい。 (1) 共有点をもつ共有点は2個または1個 D≧0 (2) 接する→共有点は1個 D=0 解答 x2+y=5とy=2x+mからyを消去すると x2+ (2x+m)=5/ 整理すると 5x2+4mx+(m²-5)=0 ...... ① 判別式をDとすると 1/2=(2m)2-5(m²-5)=-(m-25) (1)この円と直線が共有点をもつのは, D≧0のときである。 よって, m²-25≦0より -5≤m≤5 (2)この円と直線が接するのは,D=0のときで ある。 よって, m²-25=0より m=±5 また, 方程式 ① が重解をもつとき, その重解はx=- 4m_2 2・5 m 5 この値をy=2x+m に代入すると 2 5 y=2( — — — — m) +m=— — — m 1 5 y=2x+m v√5 X 0√5. m であるから,接点の座標は(-/1/23m, 1/3 m) と表される。 L=5のとき (-21), m=-5 のとき (2,-1) 劄

解決済み 回答数: 1
数学 高校生

この問題でx=0で微分可能でないことは、計算して求めますか?解答には、計算式が書いてなかったのですが、x=0で微分可能でないことはすぐわかることなのですか?回答よろしくお願いしますm(_ _)m

関数y=|x|√x+2の極値を求めよ。(笑) ReAction 関数の増減は、 導関数の符号を調べよ IIB 例題220 ③開 noboA 思考プロセス 場合に分ける xの範囲 (定義域に注意) xx+2 |x|√x+2= ] のとき)← -x√x+2 それぞれ微分を考える ] のとき) 絶対値記号を含む関数の注意点 ・・ 関数が微分可能でない点で極値をとる場合が ある。 y to 例 x=0で微分できないが極小 y=|x| y 例題 よって, x>0 66 X y′ = √x +2 + 定義に戻る 極小・・・ 減少から増加に変わる点 極大・・・ 増加から減少に変わる点 解この関数の定義域は,x+2≧0 より x≧-2 (ア) x≧0 のとき y=x√x+2 減少 増加 x 極小 By = |x|√x+2は x=0で微分できない。 Point参照。 2√x+2 3x+4 2√√x+2 >0 (イ) −2≦x< 0 のとき y=-x√x+2 3x+4 よって, -2<x< 0 のとき y' 関数の微分は定義域の 端点 x=-2では考えな 2√x+2 y=0 とすると 8 -2 ... 4 43 : 0 x=- い。 |極大 4√6 YA 19 3 + 0- + (ア)(イ) の増減 表は右のようになる。 4√6 y 0 > 7 07 9 よって、この関数は x=- 4 -1 のとき 極大値 3 46 9 x = 0 のとき 極小値 0 -24 0 x=0 のときy' は存在 しないが, x= 0 の前後 で減少から増加に変わる から、極小となる。 x 極小 lim Point... 微分可能でない点と極値・ 関数f(x)=|x|√x+2 において XITO f(x)-f(0) = =√2, lim == -√2 f(x)-f(0) 300= x-0 x-0 m 微分可能でない。 しかし, x = 0 の前後で f'(x) の符号

解決済み 回答数: 1