学年

教科

質問の種類

数学 高校生

11月の進研模試の数学の問題です。 (2)で、マーカーを引いている部分は、 なぜ"未満"ではなく、"以上"という意味の記号を用いるのか教えてください。

配点 解答 (1) (2) B2 完答への 道のり [1] 集合と命題(10点) NORIS 実数xに関する条件 g を次のように定める。 ただし は正の定数とする。 p:|x-2<3 ...... ① q: x²-ax-2a² <0 全4点 全日本 A 6点 (1) 不等式 ① を解け。 (2) SHOP [s] gであるための必要条件であるようなaのとり得る値の範囲を求めよ。 条件の不等式を解くと |x-2|<3 -3<x-2<3 -1<x<5 すなわち a≦l かつ 条件g の不等式を解くと x2-ax-2a²<0 A x-2のとり得る値の範囲を求めることができた。 B条件の不等式を解くことができた。 5 a so (x+a) (x-2a) <0 α >0 より, -a < 24 であるから -a<x<2a... がg であるための必要条件であるということは, 命題 g♪が真であ るということから, ③ の範囲が②の範囲に含まれればよい。 したがって _isa かつ 2a≦5 a ≤ 1 > 0 より 求めるαの値の範囲は 0 <a ≤1 NO 042 -110 -a Qales 560 2a -1<x<5 35- sa 絶対値を含む不等式の解 c>0 のとき |x|<c-c<x<c ass IN HIS D-75 0<a≤1 ・③α <βのとき、 2次不等式 (x-a)(x-β)<0の解は α<x<B 命題pgが真であるとき pg であるための十分条件 gはp であるための必要条件 という。 条件を満たすもの全体の集合を P, 条件g を満たすもの全体の集会 をQとするとき 命題pg が真である ⇒PCQ SUOE

回答募集中 回答数: 0
数学 高校生

何で反復試行になるのか教えてください!!

指針 注意 解答 北または東へ5区画進むうち, 東入 7! AからBまでのすべての道順は 3!4! × =35通りで,そのうちC地点を通る道順は WAZHOURSE (8) 20 5! 35 すべてが同じ確率で起こるとは限らないので注意が必要である。 例えば, D地点を通 2! 2!3! 1!1! -=20通りであるが, 求める確率は としては誤り。35通りの道順は る道順とE地点を通る道順はともに1通りずつであるが, D地点を通る確率は (1216E地点を通る確率は ( 122-1212である。 8 C地点を通るのは,東へ2区画, 北へ3区画進んだ場合である。 3 よって、求める確率は C (12) (12)=1/圏ハラ 16 のとする。 このとき, 次の確率を求めよ。 (1) 甲がC地点を通る確率 コント 20 製品が大量にあるから、 何個か取り出 1 ✓ * 121 右の図のような碁盤の目の道路 (各碁盤の目の東 西間、南北間の距離はすべて等しい)がある。 甲、 乙2人が, それぞれA地点, B地点を同時に出発し, 甲はBに,乙はAに向かって同じ速さで進むもの とする。 ただし、 2人とも最短距離を選ぶものと し,2通りの選び方のある交差点では,どちらを選ぶかは 1/3の確率であるも GA C B to (2) 甲と乙が CD間ですれちがう確率 造した [1 122 硬 1 の (1) 例題 指針 解答 123

回答募集中 回答数: 0
数学 高校生

ソタチツとセとテが分かりません どなたかわかるかたいらっしゃいましたら教えて頂きたいです

3 甲府地方気象台は, 富士山の初冠雪日 (以下, 初冠雪日) の日付を発表している。 初冠雪とは, 「山の一部がゆき等の固形降水により白くな った状態が初めて見えたとき」 とされている。 甲府地方気象台が発表している日付は普通の月日形式であるが,この問題では該当する年の1月1日を「1」 とし, 12月31日を「365」(う るう年の場合は「366)とする「年間通し日に変更している。 例えば, 2月25日は、1月31日の「31」に2月25日の25を加えた「56」と なる。 なお, 小数の形で解答する場合は,指定された桁数の一つ下の桁を四捨五入して答えよ。 また、 必要に応じて, 指定された桁まで ⑩にマーク せよ。 (1) 図1は1990年から2019年までの30年間の初冠雪日を箱ひげ図にまとめたもの である。 次の⑩~④のうち, 図1から読み取れることとして正しいものはサ である。 の解答群 解答の順序は問わない。) ス で と サ ⑩ 初冠雪日の範囲は100日以上である。 ① 初冠雪日の四分位範囲は15日以上である。 ② 30 年間で初冠雪日が最も早かった年は,7月に初冠雪が観測されている。 ③ 30 年間で初冠雪日が最も遅かった年は, 10月27日に初冠雪が観測されている。 ④ 10月1日以降に初冠雪が観測された年は, 15以上ある。 (2) 甲府地方気象台は, 甲府市の初雪の観測日 (以下, 初雪の観測日) の日付も発表している。 初 雪とは, 「寒候期 (10月から3月までの時期)に初めて降る雪のこと」とされている。 0 220 230 240 250 260 270 280 290 300 初冠雪日 図2は1990年から2019年までの30年間の初冠雪日を横軸にとり, 各年における初雪の観測 日から初冠雪日を引いた日数 (以下, 初雪までの日数) を縦軸にとって散布図にまとめたものであ る。なお,散布図には補助的に切片が330,360, 390 である傾き -1 の直線を3本付加している。(出典:甲府地方気象台のWeb ページにより作成) 図2 初冠雪日と初雪までの日数の散布図 また、次の表は30年間の初冠雪日と初雪までの日数のデータをまとめたものである。 ただし, 初冠雪日と初雪までの日数の共分散は,初冠雪日の偏差と初雪までの 日数の偏差の積の平均値である。 (i) 初冠雪日と初雪までの日数の相関係数に最も近い値は ス ある。 220 230 240 250) 260 270 280 290 300 310 図1 初冠雪日の箱ひげ図 (出典: 甲府地方気象台のWeb ページにより作成) について,最も適当なものを、 次の⑩~④のうちから一つ選べ。 160 初雪までの日数 ⑩ 0 ① -0.2 ② -0.4 ③ -0.6 4 -0.8 セ (ii) 次の⑩~②のうち,図2から読み取れることとして正しいものは セ |の解答群 ⑩ 初冠雪日が260 以上の年は, すべて初雪までの日数が100以下である。 ① 初冠雪日が最も早い年は, 初雪の観測日が最も遅い。 ② 初冠雪日が最も遅い年は, 初雪の観測日が最も早い。 (Ⅱ) 初雪の観測日の日付を 「年間通し日」としたとき,初雪の観測日の平均値はソタチ ツ テ の解答群 ⑩ 初冠雪日の分散よりも小さい ① 初冠雪日の分散と等しい ② 初冠雪日の分散よりも大きい 140 である。 120 100 180 60 平均値 分散 初冠雪日 274.77 初雪までの日数 84.57 40 20 337.11 標準偏差 18.36 607.98 24.66 最小値 222 初冠雪日と初雪までの日数の共分散 -352.80 29 (出典: 甲府地方気象台のWeb ページにより作成) 最大値 300 153 であり、初雪の観測日の分散はテ

回答募集中 回答数: 0
数学 高校生

詳しく解説お願いします。 よろしくお願いします。

26 例題 7 二項係数の性質 (1 + x)” の展開式を利用して,次の等式を証明せよ。 (1) nCo+nC₁+nC₂+ • • •+nCn−1+nCn = 2" (2) nCo-nC1+nC2-‥‥+(-1)^-1nCn−1+(-1)*nCn=0x 思考プロセス すなわち 逆向きに考える (1), (②2)の式は,①のxにそれぞれ何を代入したものか? RICO $+B) <<noin (1+x)" = "Co•1"+ "C1"-1.x + "C2・1月-2x2+ ... +nCn-1・1・x"-1+nCm・x" ... »Co+nC1x+nC2x² + ··· +nCn-1x"−¹+nCnx” = (1+x)ª) ¨¨· D · Telpla Action>> 二項係数の和は、(1+x)” の展開式を利用せよ 二項定理により 解 二項定理を用いて, (1+x)" を展開すると (1+x)" = nCo+nCix+nCzx2+ SUNG (1) ① に x=1 を代入すると ..+nCn-1xn-1+nCnxn (1+1)" = nCo+nC1・1+nC2・1+ よって (2) ① にx= -1 を代入すると 練習 7 1513 (1−1)″ = nCo+nC₁(−1)+nC₂(−1)² + ... [ nCo+nC1+nC2+..+nCn-1+nCn = 2n @ $6€ + $$• ・+nCn-1・17-1+nCn1n nCo Point.... 二項係数の性質 (a+b)" の展開式の係数に現れる "Cy を二項係数という。 二項係数には,次のような性質がある。 よって n Co-nC1+nC2-‥..+(-1)^-1nCn-1+(-1)"nCn=0 ..+nCn-1(-1)n−1+nCn(-1)" (1) nCr = nCn-r (2) +1Cr+1=nCr+nCr+1 (3) nCo+nC₁+nC₂+ • • •+nCn−1+nCn = 2² (4) nConC₁+nC₂ — • • • + (−1)n-¹ nCn-1 + (−1)" nCn = 0 (5) C1+2C2+3mCs+..+(n-1)C1+nnCn=n2"-1 (80) = ( *(1-PSIT INSIT ) (1+x) の展開式の一般 項は Crx" である。 ① はどのようなxの値に ついても成り立つ。 5d² Jei TEATRE C (1+1)" = 2" ISITIS rが偶数のとき (-1)' = 1 rが奇数のとき (-1)'=-1 J (1) 18-01S (1+x)" の展開式を利用して,次の等式を証明せよ。 (1) C-2C1+2°C2-...+(-2)-1,C-1+(-2)"C=(−1)" (2) nCinC2 "C₁ + ² + (−1)n-1 ~Ce-1 + (−1) nCr 2 22 nCn−1 on-1² (>7 (1)) 例題7 (2) (問題7 (2)) PR (S) 1

回答募集中 回答数: 0