学年

教科

質問の種類

数学 高校生

写真一枚目の(3)についての質問です。 (3)では放物線と円の間の面積を積分で求めています。 しかし、面積内に扇形が含まれていることから 扇形部分と積分部分の二つに分けて面積を求めています。 求める面積全体は写真二枚目で図示されているのですが、 どこからが扇形部分でどこから... 続きを読む

110 面積 (VI) 放物線y=ax-12a+2 (0<a</1/2) ・① を考える. 放物線 ①がαの値にかかわらず通る定点を求めよ 2 放物線①と円 x2+y2=16 く ...... ・・・ ② の交点のy座標を求めよ. (3) a= のとき, 放物線 ①と円 ② で囲まれる部分のうち, 放物 線の上側にある部分の面積Sを求めよ. (1) 定数αを含んだ方程式の表す曲線が, αの値にかかわらず通る 定点を求めるときは、式をαについて整理して, a についての恒 等式と考えます (37) (2) 2つの曲線の交点ですから連立方程式の解を求めますが, y を消去すると の4次方程式になるので, x座標が必要でも,まずxを消去してyの2次 方程式にして解きます. (3)面積を求めるとき,境界線に円弧が含まれていると, 扇形の面積を求める ことになるので,中心角を求めなければなりません. だから, 中心〇と交点 を結んだ線を引く必要があります。 もちろん,境界線に放物線が含まれるの 定積分も必要になります。 解答 LT (1) y=ax2-12a+2 より a(x²-12)-(y-2)=0 aについて整理 これが任意のαについて成りたつので [x2-12=0 y-2=0 :.x=±2√3,y=2 (2) よって, ① がαの値にかかわらず通る定点は (±2√3,2) y=ax²-12a+2 ...... ① |x2+y2=16 ②より,x2=16-y' だから ①に代入して 対称文と 他をまとめる

回答募集中 回答数: 0
数学 高校生

赤い線が引いてあるところで、xで割るのにx=0の時と0でない時で場合分けしていないのはなぜですか?教えてください!

例題 221 定積分と すべての実数xについて, 等式 xf(x)=x+2 f(x) を求めよ。 思考プロセス « Re Action 上端 (下端)が変数の定積分は, 定理の利用 y=f(x) とおくと ★★☆☆ +2 ff(t) dt を満たす関数 af*f(t)dt=f(x) を利用せよ 1910 Go Ah 微分方程 でその現 探究 例題 薬を血 さで代 をxで微分する + xf'(x) =1+2f(x)⇒y+xy'=1+2y f(x) し、 微分方程式 にx=1 を代入 1・f(1)=1+2ff(t)dt 0 () iA 解 xf(x) = x+2 2* ƒ (t)dt ... ..① とおく。 163 よって, ②より 両辺を積分すると=fa ①の両辺をxで微分するとf(x)+xf'(x) =1+2f(x) dy y = f(x) とおくと x =y+1 dx ... ② 関数 f(x) はすべてのxについて定義されており, 定数関数 f(x) = -1 は等式① を満たさないから, x(y+1) ≠0 としてよい。 1 dy 1 y+1dx x 両辺をxで微分して微分 方程式をつくる。 dx f* f (t)dt = f(x) リ Ac 関数 f(x) = -1 のと (笑)き、①の左辺は x 右辺は 2∫(-1)dt 脚生 (1) 思考プロセス (1) If (2) はっ 血中 [条 条件 x+2 log|y+1| = log|x|+Ci =x-2(x-1) =-x+2 これより |y+1| = elog|x|+C1 = eCielog|x| = となり, f(x)=-1 は ① を満たさない。 よって y=±ex-1 C ここで,C=±e とおくと y=Cx-1(C≠0)ol 例題 1=C・1-1 より C = 2 したがって,求める関数 f(x) は f(x) =2x-1 Point... 微分方程式と初期条件 B4 また, ① に x = 1 を代入すると f(1) =1であるから, らf(1)=1 ff(t)dt = 0 であるか t (2) t 微分方程式の一般解は, 任意定数を含む 曲線群を表すが、これらの曲線のうち 点(x1, 21) を通るもの、すなわち x= x1 のとき y = yı 3) という条件を満たす特殊解は,いくつかに限定される。 微分方程式に対するこのような 条件を初期条件という。 ■ 221 すべての実数xについて L チャレンジ (7)

未解決 回答数: 1
1/1000