学年

教科

質問の種類

数学 高校生

赤い線が引いてあるところで、xで割るのにx=0の時と0でない時で場合分けしていないのはなぜですか?教えてください!

例題 221 定積分と すべての実数xについて, 等式 xf(x)=x+2 f(x) を求めよ。 思考プロセス « Re Action 上端 (下端)が変数の定積分は, 定理の利用 y=f(x) とおくと ★★☆☆ +2 ff(t) dt を満たす関数 af*f(t)dt=f(x) を利用せよ 1910 Go Ah 微分方程 でその現 探究 例題 薬を血 さで代 をxで微分する + xf'(x) =1+2f(x)⇒y+xy'=1+2y f(x) し、 微分方程式 にx=1 を代入 1・f(1)=1+2ff(t)dt 0 () iA 解 xf(x) = x+2 2* ƒ (t)dt ... ..① とおく。 163 よって, ②より 両辺を積分すると=fa ①の両辺をxで微分するとf(x)+xf'(x) =1+2f(x) dy y = f(x) とおくと x =y+1 dx ... ② 関数 f(x) はすべてのxについて定義されており, 定数関数 f(x) = -1 は等式① を満たさないから, x(y+1) ≠0 としてよい。 1 dy 1 y+1dx x 両辺をxで微分して微分 方程式をつくる。 dx f* f (t)dt = f(x) リ Ac 関数 f(x) = -1 のと (笑)き、①の左辺は x 右辺は 2∫(-1)dt 脚生 (1) 思考プロセス (1) If (2) はっ 血中 [条 条件 x+2 log|y+1| = log|x|+Ci =x-2(x-1) =-x+2 これより |y+1| = elog|x|+C1 = eCielog|x| = となり, f(x)=-1 は ① を満たさない。 よって y=±ex-1 C ここで,C=±e とおくと y=Cx-1(C≠0)ol 例題 1=C・1-1 より C = 2 したがって,求める関数 f(x) は f(x) =2x-1 Point... 微分方程式と初期条件 B4 また, ① に x = 1 を代入すると f(1) =1であるから, らf(1)=1 ff(t)dt = 0 であるか t (2) t 微分方程式の一般解は, 任意定数を含む 曲線群を表すが、これらの曲線のうち 点(x1, 21) を通るもの、すなわち x= x1 のとき y = yı 3) という条件を満たす特殊解は,いくつかに限定される。 微分方程式に対するこのような 条件を初期条件という。 ■ 221 すべての実数xについて L チャレンジ (7)

解決済み 回答数: 1
数学 高校生

この問題についてで、解答と最初の計算は合っているのですが、途中から違ったように計算していて、写真の式の最後のところで、log0になってしまったのですが、変形が間違っているということですか?それともこれでは計算出来ないから違う方法で計算しなければいけないということですか?回答... 続きを読む

思考プロセス 例題] どの箱に入る確率も等しいとする。 どの箱にも1個以下の球しか入ってい 個の球を2個の箱へ投げ入れる。各所はいずれかの箱に入るものとし log n ない確率を pm とする。 このとき, 極限値 lim n→∞ n を求めよ。(京都大改) « ReAction 確率の計算では、同じ硬貨・ さいころ 球でもすべて区別して考えよ 例題214 段階的に考える まずを求める Dn = n個の球は区別して考える。 (__となる場合の (異なるn個の球が2n個の箱に入る場合の数) = ( 積や指数を含む式) 区別したn個の球を 2n個の箱からn個の箱 を選んで入れる入れ方 9A « Re Action n項の積の極限値は、対数をとって区分求積法を利用せよ 例題 172 33 x b (x) t n個の球が2n個の箱に入る場合の数は (2)" 通り どの箱にも1個以下の球しか入らないようなn個の球の入 り方は 2P通り 球は区別して考える。 2n個の箱から,球を入れ n個の箱を選び、どの が入るか考える。 球は区別して考えるから 気 よって 2nPn kn === (2n)" を使う時 ゆえに (2m) A のいつけないと(0) 2n log pn C ではなく 2P であ る。 lim lim n→∞ n 2mPm 間違う。 n -log- non (2n)" (2n) (2n-1)(2n-2). lim non lim -log 2n log + log 1/{10 n→∞n 2n ... (2n) n {2n-(n-1)} 2n-2 2n-1 + log 2n 2n ・+log. 2n-(n-1) 2n nie lim 1n-1 n→∞nk=0 = = lim non log 2n-k 2n log 2 n k=0 )= log(1-x)dx =[-2{(1-1/2x)100(1-1/2)-(1-1/2x)} = 10g2-1 ■1741からnまでの粘 = logxdx Slogx =xlog.x-x+c -log- 1

解決済み 回答数: 1
数学 高校生

なぜ、部分分数分解をする時、赤い丸のところのように分子の次数を分母の次数より1下げるのですか?回答よろしくお願いします。

次の不定積分を求めよ。 2x2-x-2 -dxh (1) x+1 (2) S dx (x+1) (2x+1) (3) a √ x²(x-1) dx 思考プロセス (1)~(3) いずれも f'(x) f(x) -の形ではない。 次数を下げる (1)ReAction(分子の次数) ≧ (分母の次数)の分数式は、除法で分子の次数を下げよ IB 例題 17 (2)(3)分母が積の形 (x+1) (2x+1) +1)(2x int (2) 1 (3) x² (x-1) 八 数分解 a + x+1 2x1 子 (x)=xh(x)}(水)1 a, b, c の値を求める。 ax+b x2 C + a b + C x-1 x + x² x-1 Action » 分数関数の積分は、子の次数を下げ, 部分分数分解せよ 2 (1) S 2-x-2 dx = √(2x-3+x1)dx x 2 -3x + log|x +1+C_3 4 章 分子を分母で割ると 商2x-3, 余り1 不定積分 IIB 1 IIB 61 (x+1)(2x+1) はらうと a b + とおいて, 分母を 部分分数分解 x+1 2x+1 α(2x+1)+6(x + 1) = 1 (2a+b)x+a+6-1=0 係数を比較すると,a=-1,6=2 より dx (x+1)(2x+1) =+ S ( x + 1 + 2x²+ 1 ) dx +1)αx -log|x + 1|+log|2x + 1| + C 2x+1 =log| +C x+1 IB 61 (3) 1 a b C = + + とおいて, 分母をはら x²(x-1) x x² x-1 うと ax(x-1)+6(x-1)+cx2 =1 (a+c)x2+(-a+b)x-6-1 = 0 係数を比較すると,a = -1, b = -1, c = 1 より S dx x(x-1) = S ( = = = = = 1 + x2 x-1 11) dx == -log|x|+ x 1/1/+1001+0 +log| 142次の不定積分を求めよ。 1 +log|x-1|+C +C pal (2a+b)x+α+6-1 = 0 はxについての恒等式で あるから f2a+b=0 la+6-1=0 (1) S 2 -dx 2x+1 =2.1/ = 2.1 log|2x+1|+C 部分分数の分け方に注 意する。 xについての恒等式であ るから fa+c=0 {-a+b=0 l-b-1=0 yolx (E) dx 3x+4 dx (3) rr+12

解決済み 回答数: 1
数学 高校生

この問題で、接線を写真のように置くか、接点を解答のように置くか迷ったのですが、どう判断すればよいですか?回答よろしくお願いします。

例題 D 出 不★★☆☆ 点(α, 0) から曲線 y=logx に異なる2本の接線を引くことができると 定数αの値の範囲を求めよ。 ただし, lim- t 0 を用いてよい。 (1) 817 点 (t, logt) における接線を1とすると 点(α, 0)から→ l が (a, 0) を通る →t と αの方程式 - 【 接線が2本 → 接点が2個 対応を考える «ReAction 接点が与えられていない接線は,接点を文字でおけ 例題 34 () tについての方程式と →みて、異なる2つの 実数解をもつ → tが2個 3 (logx)'= = よりの傾きはあり 1 x ( 章 t₁ t2 接点が異なる 接線の傾きが異なる 接線が異なる Action» 接線の本数は、接点の個数を調べよ 思考のプロセス いろいろな微分の応用 接点をP(t, logt) (t > 0) とおくと、点Pにおける接線の真数条件 moiinA 例題 84 方程式は y-logt = =(x-t) これが点(a,O)を通るから, 0-logt = 1/2(a-t)より y' = 1 x t(1−logt) = a ・① であるから、接点が異なれば接線も異なる。 よって、接点の個数と接線の本数は一致する。 ゆえに、tの方程式 ① は異なる2つの実数解をもつ。 f'(t) =-logt f(t) = t(1-logt) (t > 0) とおくと f'(t) = 0 とするとt=1 ここで,logt = -s とおくと, t→+0 のとき s→∞ となり 1 y' x ol (U) 014 12130-(笑) t (0) 両辺に掛ける。 キのとき 1 1 -キーより, 接点が異 t₁t2 なれば接線の傾きも異な る。 (x) limtlogt = lime*(-s)=i(-1/2)=0 S (S) よって limf(t) = 0 YA また, limf(t) = =-- ∞ であるから, 1- y=a 817 2本の接線を引いた図 例題 118 増減表とグラフは次のようになる。 1 0 e t t 0 ... 1 ... f'(t) f(t) + 0 7 1 y=f(t) ①の実数解は,曲線 y=f(t) と直線 y=αの共有点の 座標であるから, 異なる2つの共有点をもつとき,定数 の値の範囲は 0 <a< 1 Oa y=logx 本の接線が引けるとき, 定数 αの

解決済み 回答数: 1
1/1000