学年

教科

質問の種類

数学 中学生

答えを紛失してしまったので答え合わせをして欲しいです。

単元テスト ① (1) 3,2 (2)-2,-3,-0.5,4 ②(1)+6 (2)一号 ③ (1) ーヶ人多い (1)(-8)×7=-56 (2)(72)÷(-8)=9 (3)0÷(-3)=0 1 用語の意味がわかっていますか。 8 正の数・負の数の乗法や除法ができますか。 下の数について, 次の問いに答えなさい。 次の計算をしなさい。 -2. 3. 2. 0, -0.5, -4 (1) (-8) x 7 (2) (-72)÷(-8) 5' -1198 (1) 上の数のうち, 自然数をすべて書きなさい。 (2) 上の数のうち, 負の数をすべて書きなさい。 (3) 0÷(-3) (4) (-2)×6׳ (6) (2)―4で高い (3)-10分後前 (4)300m北 ④ (1) 4.8 (2)1.2 ⑤ (1)-2,3-0.6 (2)-3-1.4.0.1,05 ⑥ (1)(-7)-(-4)=-7+4 =-3 (2)(-26)+(-17)=-43 (3) -0.8+1.5=0.3 (4)/-(+3)=1/2-1/3 =- (7)-7-12+3=3-7-12 =-16 (2)-8-(+15)+(-7)=-8+15-7 (4)(号)×6=-4 (5)=1/ (6)(一部)=1/ ⑨(1)(-2)×(-3)×(-4)=-24 (2)(-100)÷5×(-4)=80 (3)(-24)÷(-4)÷(-3)=-2 (4)-42÷(-2)3=16÷(-8) =-2 (10 (1) 9+3×(-4)=9+(-12) (2)(-3)2×4+48÷(-8)=36+(-6) =-5 (3)3-14-12-5)×63=3-{4+3×6} =3-22 =-19 (4)3(一)÷2=番一話 =-= (5)(一号+3/3)×(-30)=(-1+1)×(-30) =1/5×(-30) =0 (3) 17-(-8)-9+23=17+8-9+23 =-2 =16 四(1)①③ 二 (2)①②③ 12 (12×311 (2) 1379,5 333 1×5 2 正の符号, 負の符号をつけて、 数を表すことができますか。 次の数を、正の符号 負の符号をつけて表しなさい。 (1) 0より6大きい数 2×4 102 9 3数以上の乗法や除法ができますか。 次の計算をしなさい。 (20より 言小さい数 3 正の数・負の数を使って, 量を表すことができますか。 〔〕内のことばを使って, 次のことを表しなさい。 [10] (1)5人少ない 〔多い〕 (2) 4℃低い 〔高い] (1) (-2) x (-3) x (-4) (2) (-100) ÷ 5x (-4)=20x-4 (3) (-24)(-4)+(-3) (4)-4 ÷ (-2)³ -(2×3×4 正の数・負の数の四則をふくむ式の計算ができますか。 次の計算をしなさい。 +(10÷12) (1) 9 +3× (-4) (2) (-3)" × 4 + 48 ÷ ( 8 ) (3) 10 分後 〔前〕 (4)300m南 〔北〕 12× 12 絶対値の意味がわかっていますか。 14 次の問いに答えなさい。 (1) 4.8の絶対値を書きなさい。 (2) 絶対値が3より小さい整数をすべて書きなさい。 4-(-3) 11 14 48. (3) 3-(4-(2-5) x 6} (4) (5) (-1/+1/2)×(-30) 1/1-30)1+1 数の集合と四則計算の関わりがわかっていますか。 下の①~④の計算の中から、 次の条件にあうものをす 4+3×6 42 5 正の数・負の数の大小関係がわかっていますか。 次の問いに答えなさい。 べて選び 記号で答えなさい。 ①O+□ ② ○ - □ ③ ○ × O÷□ 39 (1) 2.3との大小関係を不等号を使って表しなさい。 (1)○. 口がともに自然数であるとき、答えがいつでも自然 数になるもの (2) 下の数を,小さい方から順に並べなさい。 (2)○. 口がともに0を除く整数であるとき. 答えがいつて も整数になるもの 6 ww -1.4, 1.0.3.0.5 正の数・負の数の加法や減法ができますか。 次の計算をしなさい。 12 素数や素因数分解がわかっていますか。 次の問いに答えなさい。 (1) (-7)-(-4) (2) (-26)+(-17) 26 =-(7-4) =+(0.8+1,5) 6 + (7-12+3) 一番+ (3) (0.8)+1.5) 3数以上の加法や減法ができますか。 次の計算をしなさい。 (1) -7 - 12 + 3 (2) -8 (-15) + (-7) (3)17(-8) 19 +23 (4) (1)/ (+1) 21198 (3)99 + 3133 224 A B E F +5 -9 +11 +8 79 71 79-71+74+83+85+82 74 83 85 82 (1) 198を素因数分解しなさい。 (2) 108 にできるだけ小さい自然数をかけてある自然数の 2乗にするには、どんな数をかければよいですか。 正の数・負の数を使って、問題が解決できますか。 下の表は, A. B, C, D. E. F の6人のテストの点 数からCの点数をひいた値を表したものです。 Cの点数が 74点であるとき、この6人の平均点を求めなさい。 24 C D

解決済み 回答数: 1
数学 中学生

この問題は箱ひげ図の応用問題なのですが、なぜ初めに累積度数を計算するのでしょうか?

ⓒ P.13 生徒に対し, 国 , 組ごとの国 表したもので テストを行った。 下の表は,組ごとのテスト の得点を度数分布表にまとめたものである。 で比べ 度数(人) 階級(点) 1組 累積 2組 累積 3組 累積 以上 未満 45~ 50 50~ 55 55 60 60 ~ 65 65 70 (70 757 75~80 90100(点) 543 7 7 7 1 | 5 9 12 19 合計 34 23 26 27 26 33 32 32 1 34 33 1 33 33 345136 4616 2 420745133 12 13 3728 185/C して正し びなさい。 170 もっと 点が最も 下の図のア~ウの箱ひげ図は, 1組, 2組,3 組のテストの得点のいずれかを表している。 1組, 2組 3組のテストの得点の箱ひげ図を, ア~ウからそれぞれ選びなさい。 一位範囲 136 ア 四分位 ① いのは 一日太 アルゼンチン ブラジル スイス スペイン ポルトガル メキシコ デンマーク コロンビア 40 45 50 55 60 65 70 75 80点) 中 はじめに 第2四分位数 (中央値)がどの階級にふくま れるかを考える。平 各組で累積度数を計算しておく。 人数 じで ■ 得点が最も低 全 “から、四分位範 3組はデータの個数が33個だから、 データの小さい 方から17番目の値が第 2 四分位数である。 表から,そのデータは65点以上70点未満の階級にふ くまれるから, 3組の箱ひげ図はウとわかる。 は、 この箱ひげ図から読みとれることについて、 下 しょう。 ぶっと 180cmを基準に考えると、日本代表では、身長 である。また、身長が180cm以上の選手が半 ・日本代表より四分位範囲が小さいチームの チームは、およそ半数の選手の身長が中 考えてみようと 小さいのはC組。 次に,第1四分位数がどの階級にふくまれるかを考える。 『分位数はデータを小さい順に 1組はデータの個数が34個だから、 データの小さいる値を表しています。 データ 方から9番目の値が第1四分位数である。 “の平均値として計算するこ 表から、そのデータは50点以上55点未満の階級にふームの選手の数が23人なの一 くまれるから、 1組の箱ひげ図はイとわかる。 気になっています。 ■は等しい。 2組の箱ひげ図は残ったアである。 得点が70点以下 1組 ① ■25%である。 2組 ア れ身長の低 各チームで、 第1四分位数, ウ G

解決済み 回答数: 1