Mathematics
SMA

(4)cosの加法定理が証明できないので教えてください。

2 (1U727/ 説明せよ ただし, ヵば任意の整数である. ッ ( ) OS の (3) sin(の 王) sin の 2誠G ( 1) ain(9エ277) 5inの 旨a吉の ②) c6s(9= テーco59 (④ smの の (7) cos (9* 前 ニキ〒sinの (複号同了) (6⑥) sm (5 2 _ rcosg (複昌同順) っし。カ0 B =の5か) について のAS 00008 B81 直交座標系内の原点 0. 点A り。かっ点AとB の内積が4 に等しいとする. C= (の4す婦,すのg) に対して 分0 あ 長きが最小となる値 を求めよ. Cの B82 正弦定理とは, 三角形 ABC において, 辺 BC. CA, AB の長きをそれぞれ。jヵ ぅの6 円の半径を と置くと, 8 2 2 紀 ニーーー ニ ー 2玉 sinA sinB sin が成立するという定理である. (i) 正弦定理を証明せよ. (2) 角 B, Cが鋭角の三角形 ABC について, gニcosC+ccosB が成立することぇ= また. この等式と正蓄定理を用いて, sinA=sinBcosC+sinCcosB を 0 (3) 角 B が鈍角の三角形 ABC について, 上の (2) と同様にして. smA=mB - cosC+ sinCcos B を示せ. (4) B80 と ②)、(3) の等式を用い. 以下の三角関数の加法定理が成立することを示ふ /することを示せ sin(BょC) =sinBcosCェsinCcosB ( 複号同誠) cosCBょC) = cosBcosC〒sinCsin B (複号同誠) (3) 三角関数の加法定理を用いて以下を示せ. sin(2の) = 2sinのcosの7 cos(29) = cos* 9 - sin* の (倍角の公式) (6) 倍角の公式を用いて以下を示せ. wm (3) 08の ニョ/6 1+ cosの 2 っ cos | =) = (半角の公式) e朋 あま 人 7) 三角関数の和公式と半角の公式を用いて, 三角関数表を作成せよ
加法定理 証明

Answers

No answer yet

Apa kebingunganmu sudah terpecahkan?