Mathematics
SMA

この問題の解答の右下らへんの黒い(をしてる部分の変形が思いつきません。どのように考えたら思いつきますか?回答よろしくお願いしますm(_ _)m

28 例題 177 数列の和の不等式と走 (1) 自然数nに対して,次の不等式を証明せよ。 思考プロセス nlogn-n+1≦log(n!) ≦ (n+1)log(n+1)-n (2) 次の極限の収束, 発散を調べ, 収束するときにはその極限値を求めよ。 lim log(n!) n-00 nlogn-n (1) 既知の問題に帰着 ( 東京都立大 ) LA (右辺) = log2+log3 +・・・ +logn (OTRE 8T ...4 ..., n-1 (n≧2) として辺々を加えると ① ③より k=1,2, log(n!) < (n+1)log(n+1)-n 次に、②の右側の不等式において, 015 k=1 ここで Slogxdx <log(k+1) (左辺 = xl0gx-x1dx =nlogn-n+1 logn log2 0 234n-1 n x log2 + log3 +·· + logn >"logx dx いて = log(2.3··0g(n!) log(zl) = log1+log2+log3 +... +logn = 2logk ← 数列の和 よって nlogn-n+1<log(n!) 2・3・・・・・n =1.2.....n « Wire Action 数列の和の不等式は、長方形との面積の大小関係を利用せよ 例題176 この式に n=1 を代入すると (左辺) = 0, (右辺) = 0 = n! y=logx log(k+1) + Th₂ = 18 であるから nlogn-n+1≦log(n!) ④ ⑤より, 自然数nに対して ... 5 logk nlogn-n+1≦ log(n!) ≦ (n+1)log(n+1)-n 右側の不等式の等号が成 k k+1 k k+1 (2)n≧3のとき,(1)の不等式の各辺を kk+1 k+1 logk < *** logxdx < log(k+1) k k+1 x S S nlogn-n nlogn-n それぞれんをどのように変化させると logkが現れるか? k1 例題 25 ここで, n→∞の (左辺) = 1+ nlogn-n+1 nlogn―n nlogn-n nlogn-n 極限値が一致することを示す (2) ReAction 直接求めにくい極限値は、はさみうちの原理を用いよ 例題25 (1) より nlogn-n+1≦log(n!) ≦ (n+1)log(n+1)-n log(n!) (n+1)log(n+1)-n nlogn-n=n(logn-1)>0で割ると nlogn-n+1 log(n!) (n+1)log(n+1)-n り立つことはない。 を考えるから, n≧3 としてよい。 n≧3 のとき,n≧3>e より log > 1 (nlogn-n) +1 nlogn-n nlogn-n →1 n(logn-1) 1 (n+1)log(n+1) (右辺) nlogn 1 1- 1 logn =1+ nlogn-n log(n+1) logn logn+log(1+ = log{n(1+)} =logx+log(1+1/12) S800 【1+ 解 (1) log(n!) = log1 + log2+・・・+logn= Žlogk y=logx n ・・・① k=1 例題 176 y =logx は x >0で単調増加するから, k≦x≦k+1 において logk logx log(k+1) ・k+1 等号が成り立つのは,x=k, k+1のときのみであるから よって k+1 logkdxf logxdx < log(k+1)dx ck+1 logk < $logxdx < log(k + 1) ... 2 ②の左側の不等式において, k = 1, 2, n として 辺々を加えるとlogk Slogxdx < k k+1 k+1 たがっ > 小 y E logne k=1 ... 3 log2 ここで (右辺 = [xlogx]"* ■k+1 n+1 1 01234n-In = (n+1)log(n+1)-n x-dx n+1. x log1 + log2 + ・・・logn 長方形の面積を加えたもの (2)nlogn-n+1<log en+1 logxdx (3) 極限値 lim(n!) 10g を求めよ。 練習 177k0nを2以上の自然数とするとき (1) logk< logxdx log(k + 1) が成り立つことを示せ。 (n+1) logn-n+1が成り立つことを示せ。 (大阪大) 329 p.363 問題 177 収束し、その極限値は lim 11789 log(n!) =1 n-nlogn-n 1 logn logn 1 1- logn 1 logn 1 logn (1+1/2){1+ .log(1+1/2)}-1 logn →1 したがって、はさみうちの原理より、与えられた極限は

Answers

No answer yet

Apa kebingunganmu sudah terpecahkan?