Mathematics
SMA
Terselesaikan

【】でかこったとこなのですが、なにをやってるのかよくわかりません。教えて欲しいです!

+d. y=x 答! 例題 基本の 135 an+1=pan+(nの1次式) 型の漸化式 a=1, an+1=3an+4n によって定められる数列{an} の一般項を求めよ。 p.464 / 基本 34 4基本例題 34 の漸化式 an+1=pan+gで,g が定数ではなく,nの1次式となっ ている。 このような場合は, n を消去するために 階差数列の利用を考える。 漸化式のnをn+1とおき, a +2 についての関係式を作る。 これともとの漸化式 との差をとり,階差数列{an+1-an} についての漸化式を処理する。 また,検討のように, 等比数列の形に変形する方法もある。 CHART an+1=3an+4n 漸化式 (.. = part (n の1次式)階差数列の利用 nの吹式 ① とすると 2=3an+1+4(n+1) ...... 2 an+2-an+1=3(an+1-an)+4 an+2= ②①から anti-an=bn とおくと これを変形すると また PHZ bn+1=36+4 bn+1+2=3(6n+2) b1+2=a2-a1+2=7-1+2=8 よって、数列{6m+2}は初項 8, 公比3の等比数列で b+2=83-1 すなわち bn=8•3"-1-2 ①のn に n+1 を代入す ると②になる。 差を作り, nを消去する。 <{bn}は{an}の階差数列 。 α=3a+4 から α=-2 <a2=3a+4・1=7 (*) n≧2のとき n-1 an=a1+Σbk y=x n≧2のとき n-1 an=a1+ (8.3k-1-2)=1+ 8(3-1-1) -2(n-1) k=1 3-1 である。 =4・3-1-2n-1 ③ n=1のとき 4・3°-2・1-1=1 a =1であるから, ③はn=1のときも成り立つ。 ① 初項は特別扱い う。 したがって an=4.3-1-2n-1 1 章 漸化式数列 x-4 =x 11x 三点 移動 図 (*) を導いた後, an+1-an=8•3-1-2 に ① を代入してan を求めてもよい。 ると 4.-(αrn+B)} を等比数列とする解法 例題はan+1=pan+(nの1次式) の形をしている。 そこで, f(n)=an+βとして, =3+4n, an+1-f(n+1)=3{an-f(n)} の値を定める。 ⑩から ゆえに an+1_{α(n+1)+B}=3{an-(an+B)} これと an+1=3an+4n の右辺の係数を比較して an+1=3an-2an+α-2β α=-2, β=-1 ...... A の形に変形できるように α,β -2c=4,α-2β=0 ゆえに f(n)=-2n-1 より、数列{an- (−2n-1)} は初項 α1+2+1=4, 公比3の等比数列であるから an-(-2n-1)=4.3n-1 an=4.3" -2n-1 したがって 02-2 2c 106 +3によって定められる数列{a} の一般項を求めよ。

Answers

✨ Jawaban Terbaik ✨

「なぜ階差の話になるのか」という質問か
「式変形がわからない」という質問か
その他の質問か、わかりやすく聞いてもらいたいです

絶対合格

すみません、
わからない部分多いのですが、
1個目は、問題を見て、どのようなポイントから階差数列を利用するとわかったのか。
2個目は、最初にa n+2を求める理由。
(階差数列だからですか??)

です、!すいません!

1個目
指針にある通りです
階差数列の利用を考えてみるのは
漸化式のよくある一つのアプローチです

2個目
そうです
nをn+1に置き換えた式から、元の式を引きます

絶対合格

ありがとうございました!!!

Post A Comment
Apa kebingunganmu sudah terpecahkan?