Mathematics
SMA
Terselesaikan

この問題なんですが、一枚目の解答と、二枚目の解説動画の解答とで少し形がちがうのですが、どちらで答えたほうがいいのでしょうか?あと、一枚目の解答の最後の「よって、」からがなぜそうなるのかが分かりません!誰か解説してくださると嬉しいです。宜しくお願いいたします🙇

31-40 (58) 第1章 数 列 Think 例題 B1.27 いろいろな数列の和 (2) 考え方 解答 S,=1-2'+3°-4'++ (−1)"'n を求めよ. **** S, は数列 an=(-1)"+2の初項から第n項までの和であるが, nが偶数か奇数から その和を分けて考える必要がある. nが偶数, つまり,n=2mmは自然数) のとき. wwwwwwwwww S2m=12-2°+3°-4++ (2m-1)-(2m) =(12-2)+(32-4)+. +{(2m-1)-(2m) } nが奇数、つまり、n=2m+1のとき 第2 第1項 S2m+1=12-2°+32-4’++ (2m-1)-(2m)+(2m+1) 第 (2m+1)項 =(1-2)+(32-4°)+....+{(2m-1)-(2m)*}+(2m+1) 第項 nが偶数のとき, n=2mmは自然数) とおくと, S=S2m=(12−2°)+(3-4)+..+{(2m-1)-(2m) } =Z{(2k-1)-(2k)*}=2(-4k+1) k=1 1 n=2, 4, 6. 数列 ((2m-1)-(2m) の初項から第m での和と考える。 =-4zm(m+1)+m=-m(2m+1) n=2m より,m= =nを①に代入して S=-- =-1/2m(n+1) -12(n+1) 和はで表す. nが奇数のとき, n=2m+1(mは自然数) とおくと, ちの方 m 〇りやよい m S=S2m+1= (12−22) + (3-4) +・・ +{(2m+1)-(2m)2}+(2m+1)^ =Szm+(2m+1)=-m(2m+1)+(2m+1) (m+1)(2m+1) =/ ③ n=2m+1 より, m = (n-1) を③に代入して S.=(2x+1/2)(n-1+1)=1/2m(n+1)……③ ④は n=1のときも成り立つ よって,②④より Focus S=(-1)+1 1/21n(n+1) が偶数の場合と奇数の場合に分けて考える S2m+1=S2m+a2m+1 n=3, 5, 7, ...... n=1 とすると, 12/21.2=1 場合分けした② ① の形のままでもよい。 練習 一般項 an=(-1)n(n+1) で定められる数列の和 B1.27 S„=a1+a2+α+......+α を求めよ. ***
例題 例題 例題 例題 いろいろな数列の和(2) Sn=12-22+32-42+......+(-1)* +12 を求めよ. 2 nが奇数のとき n=2m - 例題 = Szm-1 例題 = 例題 例題 例題 例題 例題 例題 (MEN)) 2 (M-1) ポイント Szm-2) + (2m −1)² (m-1){2(-1)+1)+(2m-12 = m (2m-1) = 2 (n + 1) n 例題

Answers

✨ Jawaban Terbaik ✨

大差ないです
受験ならどちらも丸です
ただ、動画の方だと嫌がる人はいるかもしれませんね

まとめ方は図に書きました
慣れです

moon

最後のまとめ方がどうやるのか分からないので、教えてくださるとありがたいです。

そこに書いたこと全体がまとめ方の説明だったのですが…
nの偶奇で-1か1かの違いなので、
そこを(-1)ⁿ⁺¹に置き換えます
実際nに偶数や奇数を入れれば
成り立つのがわかるでしょう

moon

理解出来ました!ありがとうございます!

Post A Comment
Apa kebingunganmu sudah terpecahkan?

Pengguna yang melihat pertanyaan ini
juga melihat pertanyaan-pertanyaan ini 😉