Mathematics
SMA

(確率)Z会共テ実践
この問題が(2)から分からなくなりました。
教えて欲しいです🙇‍♀️

第3問 (選択問題) (配点 20 ) 図のように、東西方向と南北方向に通路が作られた倉庫の中で、 通路に沿って荷物 を運ぶロボットがある。 通路と通路が交差する点から,どちらかの通路に沿って一定 の方向に移動するとき、 次に通路と通路が交差する点までを1プロックと数えるもの とする。なお、どの方向にも十分に進むことができるものとする。 北 N (2) このロボットは,どの交差点においても. 東西南北の4方向のうち移動すること のできる方向に等しい確率で移動する設定となっているとする。 つまり、来た道を 戻ることもできる。 (3)荷物を素早く運ぶために、ロボットが点Aから点Cへ最短距離で到達する確率 をできるだけ大きくしたい。 そこで、図の点 X1,X2, X3, ..., X10 のうち、1点 を進めないようにすることを考えた。 西 A D. C E 南 B ロボットが点Aから点Cに最短の距離で到達する。 つまり 全部で4ブロック 東 進んで点Cに到達する確率は ウ エオカ 全部で6ブロック進んだ時点で キ はじめて点Cに到達する確率は である。 クケコ 西 北 IXT IX6 X A はじめ、ロボットは点Aに置かれている。 (1) このロボットには, 東西南北の4方向それぞれについて、 何ブロック進んだか を記録しておく機能がある。 東に進んだブロック数を x, 北に進んだブロック数を 西に進んだブロック数を南に進んだブロック数をw とする。 また、ロボットが点Cに最短の距離で到達したとき、点B.D.Eを通っていた 条件付き確率をそれぞれPB, PD, PE とすると,PB, PD, PEの大小関係とし て正しいものはサである。 (i)点X2 を進めないようにする。 南 C 11 サの解答群 点Aの1ブロック東の点をF, 点Aの1ブロック北の点をGとおくとき、点 シ ロボットが点Cに到達するのはアのときであり,点Aから点Cに最短の距 Fを通って,点Aから点Cに最短の距離で到達する確率は であり、 離で到達するのはイのときである。 □の解答群 OO PB<PD=PE PB=PD<PE PB=PD=PE ①Pb <PB= PE @PB= PE <PD PE<PB = PD ⑤PD=PB<PB セ ソ Gを通って, 点Aから点Cに最短の距離で到達する確率は であ タチツ (数学Ⅰ・数学A 第3間は次ページに続く。) 8 x=z-2かつy=w-2 x=z-1 かつy=w-l x=zかつy=w x=z+1 かつy=w+1 ⑩x=z+2 かつy=w+2 の解答群 ①x=z-2またはy=w-2 ③ x=z-1 または y=w-1 ⑤x=z または y = w ⑦x=z+1 または y=w+1 ⑨x=z+2またはy=w+2 @r=y=z=w=0 ②x=y=0かつz=w=1 ①r=y=z=w=2 ③ x=y=0または z=w=1 ④r=y=1かつぇ=w=0 ⑤ x = y=1 または z =w=0 ⑥ x=y=0かつぇ=w=2 ⑦ x = y = 0 または z=w=2 3 x=y=2かつぇ=w=0 ⑨ r = y = 2 または z =w=0 -0-20- テ よって、点Aから点Cに最短の距離で到達する確率は である トナニ (1)点X5 を進めないようにするとき、点Aから点Cに最短の距離で到 率は である。 ネノハ -0-21-
確率 高校数学 数学 共テ 共通テスト

Answers

No answer yet

Apa kebingunganmu sudah terpecahkan?

Pengguna yang melihat pertanyaan ini
juga melihat pertanyaan-pertanyaan ini 😉