Mathematics
SMA
Terselesaikan

2項間漸化式を目指して2枚目のように解きましたが、答えが違いました。なぜでしょうか。

92項間漸化式/an+1=pan+f(n)- 次の式で定められる数列の一般項 αを求めよ. (1) 1=1, m+1=20n+n (n=1, 2, 3, ...) (2) a1=4, n+1=40-2n+1 (n=1, 2, 3, ...) (弘前大・理工-後) (信州大工) 2項間漸化式の解き方 an+1=pan+f(n) (p=0.1f(n)はnの式)……型の漸化式を解く には,変形してan+1+g(n+1)=p{an+g(n)}となるようなg(n)を見つけて,{an+g(n)}が等比 数列になることを用いればよい. (i) f(n)がnの多項式の場合,g(n)もf(n) と次数が等しいnの多項式である。g(n)の係数を 未知数とおいて, ☆より係数を求めればよい。 特にf (n) が定数の場合は前頁で扱った。 (i) f(n)=Aq"(g=p, A は定数) の場合, g(n)=Bq"として,☆が成り立つように定数Bを定め an+1 an A ればよい.また, an+1= pan+Ag" の両辺を "+1で割って + pn+1 pn p 4(1). ここで. an ,= bn とおいて, bm+1=bn+ A n 9 として階差型の解き方 (前頁) に持ち込む手でもよい。 解答圜 p" (1) an+1+A(n+1)+B=2(an+An+B) を満たす A, B を求める. an+1=2an+An+B-A と条件式を比べて, A=1,BA=0 ... B=1 an+1+(n+1)+1=2(a+n+1) より, {an+n+1}は公比2の等比数列 . .. an=3.2"-1-n-1 よって, an+n+1=2"-1 ( 41+1+1)=3・2n-1 (2) +1=4a-2n+1 を 4n+1で割って, An+1 an 1\n+1 4n+1 4m 2 an a1 1\n+1 bm- == 4" とおくと, b1=2=1, bn+1=bn- 2 となるので,n≧ 2 のとき, 1\n-1 1- 1k+1 =1- k=1 k=1 左辺は A (n+1) になることに注 意. 【 (2) の別アプローチ】 f (n) が Aq” の形の場合は、 を qn+1で割ると,典型的な2項 間漸化式に帰着されることに着 目. 漸化式を2+1で割って n-1 bn=b₁+ (b+1-br)=1—', =1/1/11(1/1)-1/2+(1/2)(n=1のときもこれでよい) よって、 2=4m {/12+(1/2)"}-2-4-1+2" 【別解】 (2) 4n+1+A.2n+1=4(an+A2") を満たす A を求める. an+1=4a+4A2"-A2"+1=4an+A2"+1 と条件式を比べて, A=-1. an+1-2n+1=4(an-2")より, {an-2"}は公比4の等比数列. よって, an-2"=4"-1(α1-21)=2.4-1 ..an=2.4"-1+2" 9 演習題(解答は p.75) 次の式で定められる数列の一般項 n を求めよ. (1) 41=2,n+1=3an+2n2-2n-1 (n≧1) (2) a1=1,4n+1-2an=n.2n+1 (n≧1) (3) α1=1,n+1=2 1 ant an+1 an =2- 1 2"+1 2" an Cn= とおくと, C+1=2c-L 2" これから解く. (岐阜大) (日本獣医畜産大) (1), (3) an+1+f(n+1) =k(antf(")) となる f(n) を探す (2)階差に持ち込む n-1 (n≧1) n(n+1) (岐阜大 教後)
241 (2) 20より両辺を2で割る。 27H A An 42 2" 22-10-0 ① Kany ar 4.公差-1の階麦nza 2' 数人がd=2d-1をみたすようになる 2=1であるので、①②辺を引いて D-1-2 (0-1) 12月1 =2 42" ・am 2" は初 42 1.企2の等比数列 1. 1.1.2 h-1 An = (-2-1) 2" = 262-1

Answers

✨ Jawaban Terbaik ✨

最後から3行目
aₙ/2ⁿ -1 = 1×2ⁿ⁻¹
から
aₙ/2ⁿ -1 = 2ⁿ⁻¹
aₙ/2ⁿ = 2ⁿ⁻¹+1
aₙ = 2ⁿ(2ⁿ⁻¹+1)
aₙ = 2ⁿ×2ⁿ⁻¹+2ⁿ
aₙ = 2²ⁿ⁻¹+2ⁿ

-1の移項と指数法則が違います

Post A Comment
Apa kebingunganmu sudah terpecahkan?