Mathematics
SMA
Terselesaikan

数2 円の(1)の問題なのですが、最後の=9になるのはなぜですか?教えてください🙇‍♀️🙇‍♀️🙏

ay=x2 y₁) +y2=2 x座標が重解) す。 基本 例題 93 2つの円の位置関係の円のCS 15- 00000 (1)円 C1x2+y2-6x-4y+9=0 と点 (-2,2) を中心とする円 C2 が外接 している。円 C2 の方程式を求めよ。 (2)2つの円x+y=x2(r>0) x+y-8x-4y+15=0 , 類 名城大] ② が共有点をもつようなの値の範囲を求めよ。為p.13基本事項 CHART & SOLUTION 2つの円の位置関係 2つの円の半径と中心間の距離の関係を調べる 半径がそれぞれr, r' である円の中心間の距離をdとすると d=r+r' (1)2つの円が外接する (2)2つの円が内接する d=r-r' よって, (1) と合わせて 解答 2つの円が共有点をもつ⇔|r-r≦a≦rtr (1)(x-2)^2=4 から, 中心 (3,2),半径2である。 0円C2は中心が点 (2,2) であるから, 2つの円の中心間の距離dは d=√{3-(-2)}2+(2-2)2=5 C1, C2は外接しているから, C2 の半径を (0) とすると ->2+r=5 r=3 よって (x+2)2+(y-229-7 ゆえに (2)円 ①は中心 (0,0), 半径 (不) ②は(x4)2+(y-2)2=5 から, 中心 (4, 2), 半径√5である。もします。 2つの円の中心間の距離は √4°+22=√20=2√5 2つの①②共有点をもつ条件は \r−√5|≤2√5 ≤r+√√5 r-√5/≦2√5から よって 2√5r-√5=2√5 -√5≤r≤3√5 2√5 ≤r + √√5 5 √√5≤r ③ > と, ③ ④ の共通範囲を求めて √5≤r≤3√5 PRACTICE 933 = 5 ④ (1)円C:x2+y2=5 と点 (2,4) を中心とす 式を求め (2) 2つの円x2+y^=r² (r>0) 点をもつ ...D, x を求めよ。 半 t r=3√5 ① ② (4,2) C2 が内接している。 円 C2 の方程 -6x+8y+16=0 ② が共有 3章 12 円円と直線, 2つの円

Answers

✨ Jawaban Terbaik ✨

luaさま
中心 (a , b) , 半径 r の円の方程式は
 (x-a)²+(y-b)²=r²
です。本問は r=3 なので、「=9」 になります。

lua

Takeさま
返信遅くなり大変申し訳ございません。
丁寧なご回答ありがとうございます!
助かりました。🙇‍♀️

Post A Comment
Apa kebingunganmu sudah terpecahkan?