✨ Jawaban Terbaik ✨
これは余事象の考え方を用います。
2300以上の個装を求めるには、1で求めた全ての数(全体集合)から2300より小さい数の個数(余事象)を引くと求められます。べん図で表してみるとわかりやすいです。(下の写真参照)
では余事象の求め方です。
最初に2300よりも小さい数ですから千くらいは1で決定します。すると百の位と十の位と1の位は順列ですから4P3(1は千位で固定してますから4つのカードから3つを並べる順列です)で24通りと求められます。
これで千位が1の場合の数の総数が求められました。
次に千くらいが2で百の位が1の場合も2300よりも小さいのでこの場合について考えます。
十の位の数と一の位の数の順列は3p2で6通りともとめられます。よって、余事象は24+6で30通りあることが求められました。
したがって、求めたいものは全体集合-余事象なので
120-30で90通りあることがわかりました。
このことから確率は120分の30で4分の3とわかります。長文でごめんなさい🙇♀️
最後のところ120分の90でした🙇♀️
補足です。
先程述べたいがいにも2300よりも小さくなる場合は無いので確認してください。
別の問題でも場合分けをする際は、後で抜けがない確認すると良いでしょう