Mathematics
SMA
Terselesaikan

解説の(2)(3)で黒線が引いてあるところがわからないので教えて欲しいです!!

152 第6章 微分法と積分法 基礎問 153 ●時は 「時はケ 96 接線の本数 曲線 C:y=x-m 上の点をT(t, ピーt) とする. (1) 点Tにおける接線の方程式を求めよ. (2)点A(a, b) を通る接線が2本あるとき, a,bのみたす関係式 を求めよ。 ただし,a>0,b=α-a とする. (3)(2)のとき,2本の接線が直交するようなa, bの値を求めよ. 精講 (2)3次関数のグラフに引ける接線の本数は、接点の個数と一致 ます。だから, (1)の接線に A(a, b) を代入してできるtの3次方 程式が異なる2つの実数解をもつ条件を考えますが、このときの 考え方は 95 注 で学習済みです。 (3) 未知数が2つあるので, 等式を2つ用意します。 1つは(2)で求めてあるので,あと1つですが,それが「接線が直交する」 を式にしたものです。 接線の傾きは接点における微分係数(84) ですから、 2つの接点における微分係数の積=-1 と考えて式を作ります。 解答 (1) f(x)=-x とおくと, f'(x)=3-1 よって, Tにおける接線は,小)× y-(t-t)=(3t2-1)(x-t) y=(3t2-1)x-2t3 86 (a=0 lg(0)g(a)=0 a=0 (a+b) (b-a+α)=0 ba³-a, a>0 745, a+b=0 (3)(2)のとき(*)より, t2(2t-3a)=0 Sack 参考 <α0 は極値をもつ ための条件 2本の接線の傾きはf'(0) (22) だから、直交する条件より 3a (0) ƒ (32)=-1. (-1)(a²-1)=-1 8 a²= 27 という a>0より,a= 2√6 _26 b=- 9 9 ポイント 3次関数のグラフに引ける接線の本数は であ 接点の個数と一致する 不 実は,3次関数のグラフに引ける接線の本数は以下のようになるこ とがわかっています. 記述式問題の検算用やマーク式問題で有効で す。 3次曲線Cの変曲点 (89)における接線をひと するとき, 斜線部分と変曲点からは1本引ける ・Cと上の点(変曲点を除く) からは2本引ける ・青アミ部分からは3本引ける K (2) (1)の接線は A (a, b) を通るので b=(3t2-1)a-2t3 2t3-3at2+a+b=0 ...... ( * ) y=x-x (*) が異なる2つの実数解をもつので 第6章 (極大値)×(極小値) = 0 であればよい. g(t)=2t-3at2+α+b とおくとき, y=g(t) のグラフが,極大値, 極小値をもち, T 演習問題 96 195注 A(a,b){ (t,t³-t) 曲線 y=x6xに点A(2, p) から接線を引くとき 次の問いに g'(t)=6t2-6at=6t(t-a) g(t)=0 を解くと, t=0, t=α だから 答えよ. (1) 曲線上の点T (t, -6t) における接線の方程式を求めよ. (2) で表せ (3)点Aから接線が3本引けるようなかの値の範囲を求めよ.
微分法 接線の本数

Answers

✨ Jawaban Terbaik ✨

(1)について、点Tは「曲線C上のどこかの点」であり、求めた式は「曲線Cと接する接線の式」です
そのため、曲線Cと接するような直線を「全て」表しています
また、「(2) (a,b)を通る接線が2つ…」とあり、ここから全て表している接線の式に、点Aを代入することで、点Aを通る接線だけを表すことができます
(1)で求めた接線の式に(a,b)を代入することがわかると思います
また、次ページ上部について
(極小値)×(極大値)=0であれば、異なる解2つとなりますね
そのため、前ページで求めたt=0,aの時
極小値g(0)
極大値g(a)
をそれぞれ取り、
g(0)g(a)=0
と書けます。あとは、g(t)にそれぞれ代入して求めれば、
(a+b)(b-a^3+a)=0
を出せます
また、この時a≠0があるのは、a=0であった時、極値を取る点がt=0だけになり極値が無くなってしまいますね

ayaya

とても分かりやすかったです!ありがとうございます!

rain

間違いがあったので訂正します
極大値g(0)と
極小値g(a)です
すみません🙇

Post A Comment
Apa kebingunganmu sudah terpecahkan?