Mathematics
SMA

63.
記述に問題点等ありますか??

る確率 機械 63 良品 械 A を当 の意 製造 3 50 ベイズの定理 重要 例題 63 袋には赤球10個,白球5個,青球3個;袋Bには赤球8個,白球4個,青球 00000 ;袋Cには赤球4個,白球3個,青球5個が入っている 1 3つの袋から1つの袋を選び, その袋から球を1個取り出したところ白球であっ それが袋Aから取り出された球である確率を求めよ。 した。 袋Aを選ぶという事象をA, 白球を取り出すという事象をWとすると, 求める確率は P(WNA) 条件付き確率Pw (A)= よって、P(W),P(A∩W)がわかればよい。まず,事象 Wを3つの排反事象 [1] A から白球を取り出す,[2] B から白球を取り出す, [3] C から白球を取り出す に分けて, P(W) を計算することから始める。 また P(A∩W)=P(A)P(W) 袋 A, B, C を選ぶという事象をそれぞれ A, B, C とし, 白球 | ⑩ 複雑な事象 を取り出すという事象をWとすると 排反な事象に分ける P(W)=P(A∩W)+P(B∩W) + P(COW) 1 1 5 3 18 よって 求める確率は =P(A)PA(W)+P(B)PB(W)+P(C)Pc(W) 1 5 + 3-2 2-3 41 +2²7 + 1/²2 - 11 12 54 4 + 1 4 3 18 検討 ベイズの定理 上の例題から、Pw (A)= AMB, A₂B, 一致し,PB (Ak)= P(W) である。・・・・・・・・・ Pw(A) = P(ANW) _ P(A)PÂ(W) _ 5 P(W) P(W) 54 . P(B) ·|· P(B) 1 10 4 27 加法定理 乗法定理 基本 62 A B C AOW BOW Cow 2 27 W 5 542 P(A)PA (W) P(A)PA(W)+P(B)PB(W)+P(C)Pc(W) 一般に, n個の事象 A1, A2, ・・・・・・, An が互いに排反であり, そのうちの1つが必ず起こるもの とする。このとき 任意の事象B に対して,次のことが成り立つ。 PB(AR)= P(Ah) PAN (B) (k=1,2,.., n) P(A)PA,(B)+P(A2)P,(B)+......+P(A)Pa,(B) | これをベイズの定理という。このことは, B=(A∩B) U(A20B) U......U (A∩B) で, A∩Bは互いに排反であることから、上の式の右辺の分母が P(B) と一 P(B∩Ak)P(A∩B) かつP(A∩B)=P(Ak) Pa, (B)から導かれる。 001 が成り立つ。 14 12 A-0004 練習 =) 45 (1 63 仕入れた比率は4:3:2であり, 製品が不良品である比率はそれぞれ3%, 4%, ある電器店が A 社, B 社 C社から同じ製品を仕入れた。 A社、B社、C社から | 5%であるという。 いま、大量にある3社の製品をよく混ぜ,その中から任意に1 [類 広島修道大] (p.395 EX46 |個抜き取って調べたところ, 不良品であった。 これがB社から仕入れたものであ る確率を求め 393 2章 9 条件付き確率 る る る る。 立つ。 である である m-1) 倍数で である 1, 2) ったと 灼数は, あるな を満 には, ①へ。 14234 n進 という。
1712065 A = ²32 +3 12 & Easte を 白球であった。」 とする。 したがっく。 PAIB)- PLANBI PCA) NO. DATE B:「袋Aから取り出された1個の球が目とあった。 Peni PIA) - ( + + + + 2) +. opt. £t = √ 12² 3 f f f 36 384 PLAND) = £x 7/8 = 3/2 = 20 $ 34 - 1974 54 2 10 15 >

Answers

No answer yet

Apa kebingunganmu sudah terpecahkan?