Mathematics
SMA

22.1.ウ
この記述でも問題ないですか?

44 基本例題 22 根号を含む式の計算(基本) (1) (ア), (イ) の値を求めよ。 (ウ) はがつかない形にせよ。 (ア)√(-5) (1) √(-8)(-2) (2) 次の式を計算せよ。 (ア) √/12+√27-48 (ウ) (2√2-√27) (1)(√11-√3)(√11+√3) (I) (√2+√3+√5)(√2+√3-√5) CHARTを含む式の計算 ①A=|4| 解答 (1) (7) √(-5)² =√/25= √5²=5 (イ)√(-8)(-2)=√16=√4=4 (ウ) α> 0, b<0であるから (¹) √a²b² (a>0, b<0) をつける。 指針 (1) A の取り扱いは,A=|4| とみるのがコツ。 つまり A≧0ならば A=A A <0ならば (1)まず√の中のものを計算。 (ウ) (ab) abの正負を調べる。 (2)を含む式の計算では,「2√3+3√3=(2+3)/」 といったように,の中が同 じ数である項を同類項とみて計算を行う。 00000 ab<0 ①√内の数を素因数分解し, kak√a (k>0, a>0) を用いて, 平方因数を√の外に出す。 √内をできるだけ小さい数にする。 [②] 文字式と同じように計算し, (va) が出てきたらαとする。 ② A'=-A よって √a²b² = √(ab)² = |ab|=-ab (2) (与式=√2・3+√32-3-√/ 4°・3=2√3+3√3-4√3 =(2+3-4)√3=√3 (イ) (与式)=(√II)-(√3)=11-3=8 - (ウ)() P.41 基本事項 SIAH) の中は小さい数に (ア) (-5)^5は誤り! √(-5)^2=|-5|=5として もよい。 (ウ)、(ab)=abは誤り! ●<0のとき ||=-● まず の中を小さい数 にする。 次 指針 (1) CH (1) 解 (2) (3) C
例題22 1) 7. Ja²b² a>0. b <0 ƒ/ -b 70 70α²" - ab zo £₁²] a^² b ² = √(-_ab)^² = - ab + aba 5,2

Answers

No answer yet

Apa kebingunganmu sudah terpecahkan?