ノートテキスト
ページ1:
設汽車在才一道門. Car p(s) = p (D₁) p($10₁) + p (D₂) pl$1D2)+p(D3)p($103) = 0 + = 1 + 1 = 3/1/2 > car 1+1= 3 car || (7) = . (不連續) (布) Ch 2. Discrete distributions (2600) (r.v.) 2-1: random variables of discrete type. XIR (a real-valued function) 2-2: Mathematical expectation $1. 2-3: Special mathematical expectations. eta variance & Var(x) = E [(x-(x))"] = 0x 5x = √5= moment-generating function (4) 32 ± 2 (m.g.f on M.G.F) m(t) = Ele characteristic function 11/12 (ch. f.) $ (+) = E (etx) i = FI || 8(+)| = | Electx | | ≤ El ex | = | probability generation function. In 145x32 (p.g.f) 4(+)/p(t) = E(+") 2-4: The binomial dist. = 1&13+)650 二 2-5: The negative binomial dist. = 11500 2-6: Poisson dist. tasu. Have a nicetime
ページ2:
No -1D3) Have a nice time Def: A random variable (r.v.) X X: SIR 2: outcome space. X (s) = x, SE, XEIR. (Support) m PX = x Date Space of X = {x:X (A) = x, ^=SL, XEIR} = S eg: Toss a die 52 = { 0, 0, 0, X = the number of dots. X(四)=1 X = 1 X(四)=2 X = 2 間 space of x = {1, 2, 3, ..., 6} x() = 6 記x=6 Y= the Square root of the number of dots. Y(0)=5T Y(0)=52 space of Y = {51, 52, ..., 56}. Y()=56 Def: probability of mass function of X (p.m.f) In 14 F 2 J, Z X: discrete type of rv. f(x) = p.m.f of x, satisfies (a) f(x)>0, XεS (b)姦f(x)=1.全机率 y os finst (c) P(A) = P(XEA) = x Af(x) if A≤'s As X is discrete, pmf=pf RP f(x) = P(x=x). pf: prob. function.. Def: (cummulative) distribution function of X ((c)d.f of x) F(x) = P(X ≤x) = x(t) GEE-JUMP
ページ3:
eg. Toss a fair die Date X= # of dots. space of x = {1,2,.,6} Find the pmf of X and cdf of X. sol; f(x) = 1 = x=1.2..., b. pmf. = 1 + o, elsewhere. F(x) = P(X ≤x) -| P(X ≤ -1) = 0 (x~ discrete uniform) 0 No Have nice time f pmf Step function. 9 1 1.5 F(x) = 10 亡 [x] 6 X<1 [x] ≤ x < [x]+| 1, X36 123456 1: X is discrete. cdf of X is step function.. 123456 cdf of X is right-continuous 0≤ F(x) ≤ eg. Roll a 4-sided fair die twice. X = the maximum of two outcomes. Outcome space √2 = {(d₁,da): d₁= 1.2,3,4, d² = 1,2,3,4} Space of X = {1,2,3,47 Have a nice time
ページ4:
Have a nice time f(1) = p (x = 1) = p({ (11) }) = 16 3 f(2) = p (x=2) = p({(1, 2), (2,1),(2,2)}) = 1/16 I Date No 2x4 2 3 4 3. f(x) = {1, x = 1,2,3,4 52 0 elsewhere. ₤13) = & +(4)=76 Ex: cdf of x. 16 16 16 Ni 2 classes, I & II. IL N₂ • Ten objects (n≤min (N₁, N₂} ) X = # of objects in class I among ʼn selected objects. space of x = {0, 1, 3, n}. 2,..., f(0) = (N)(NZ) h (N₁+ N₂) f(1) = (M)(二) (NTN) n pmf off: f(x) = Ni+N₂ X = 0, 1, 2,..., n X ~ hypergeometric (N₁, N₂ ; n) check: fix) = 1 号(x)(3) (NM+2) n=0 Ni+Nz h + (M+N₂) 0) eg: 100 fuses / 20 defective (7 Bos) so good. 5 fuses are selected at random. X = # of defective items in 5 selected fuses Find the pmf of X and its space Space of X = {0,1,2,3,4,57, X-hyper (70, 80; 5) fon = (*)(8) (189) X=0,1,2,3,4,5 GEE-JUMP
ページ5:
Date eg: fix) is a pmf of X. (1) f(x)=(x, x = 1, 2, ..., n. f(x)=1 c₁(x) = 1 C = {n+1} #. n(n+1) (>) f(x) = (x², x = 1, 2, ..., n. C = n(n+l)(n+1) #. Ex. (3) f(x) = cx³, X = 1, 2,..., n. C = d (4) f(x) = x, x = 1, 2, …--- = d = X d. (= divergent. d (5) f(x) = = X = 1,2,-- d b d = TU (6) f(x) = (x+1)(x+2), x=2,3,4... = d = 3 d [ 21/2/2 (x+1)(x+2)] = [ Have a nice time No. Have a 2-2
ページ6:
No. Have a nice time 無看又实驗結果 2-2 (Mathematical) expections. Def: X is a discrete- type v.r. with pmf f(x). E[u(x)] = u(x). f(x), if Elu(x)/coo. E[u(x)]: expected value of u(x) (mathematical) expection of u(x). (arithmetic) mean of u(x). eg: Toss a balanced die. X= # of dots. Date E(x) @ E (x²³) E(e*) © E(lux) © E(10x+3) -Sol; f(x) = { {, x = 1, 2, ..., 6. o elsewhere. _ @ E ( x ) = 1 · — — + 2 · — — + ··· +6.1 = 21 = 1 +..... © E(X) = = = (1 + 2 + - +6³) = 21/ E()=(e+e+-+e) 2 @E (lu x) = = ( lul+...+lub) = ln 120. E (10x+3) = 121 (10x+3). f(x) =100巷1(x.f(x)+3f(x) = 10.E(x) +3. Thm: ( Properties of expectations). (a) E (c) = C, C is a constant.. (b) E[cu(x)) = C.Elu(x)] (c) E [C₁u, (x) + C ₂ U₂ (x)] = C₁E (U, (x)) + (₂E (U₂ (x) (d) If uxo. then Elu(x)] >0. (e) If u(x) > V(x), then E (u(x)) > E (v(x)) (c) U(x)-V(x) > E (u(x)-V (x)) = E (u(x)) -E (v(x)) >0. GEE-JUMP
ページ7:
No. Have an E(X)=5xfx) 17 E(x) = x eg. f(x) = x, x = 1.2.3.4. is the pmf of x E(x), E(x²), E (x(5-x)] 4 . Date E(x) = $ x ⋅ fix ) = 1 · 1 6 + > · 7/16 + 3 + 1/16 + 4 + 1/16 = 3. E(x) = x* f (x) = (1+2²+3+4)=10. Ex-x)]=5E(x)-E(x) = 5. eg. Assume E[(x-b)] exists, b is not a function of X. Find the value of b sit E [(x-6)²] is minimized... E[x-b]=E[x2bx+b²] = E(x²³) - 2b E ( x ) + b² (b) h'(b) = 2b-2E(x) = 0 + b = E(X) 1(b)=2>0 -[[(X-E(X))"] As b = E(x), E((x-6)²] has a minimum (n-x ✓ eg. x ~ hyper (N, N₂ ; h), Find E(X) (f(x) = x=0,1,--, n) E(x) = x. ()() (M+M) x=1 (N,+N₂+N+N (x)=(x) N y=x-1 = n N+N n-1. h (N + N = -1) n-1 Have a nicetime = n. N NIN₂ #
ページ8:
No. Have a nice time Date X = # of Bernoulli trials needed to obtain the 1st Ę P(success for each trial) === p success. Find pmf of x @ E(X) = + space of x = {1, 2, .... } • f (x) = (1-p)" " p, x = 1..... 2, 10 elsewhere. ✓ E(x) = x (1-pp = · 1 A = 1 + 2 (1 - p) + 3 ( 1- p)² + ..... -(1-p)A = (1-p) +2 (1-p)+ PA = 1 + (1 - p) + (1 - p)²+ = ..... 1-11-1) = + = A = 1/2 X~ Geo (P). X has the geometric dist. with p(success) = p. eg. X ~ Geo (to) = E(X) = = = 10 # eg. Flip a fair die. Find the mean number of flips. to obtain 6 different numbers. \ + ½ + ½ + ½ + ½ + ½ = 14.7 # GEE-JUMP
ページ9:
Date No. 2-3 Special mathematical expections. Def: Variance of X. (expected value of x) Mx-Elx) mean of X 0x = Var (x) = [(x-μx]] = x + (x-μx) - fox if exists. St. dev. Def: standard deviation of x. 註: x = Var(x) : X30 = E(X) > 0, Var (X)>0, 570 2 Theorem: Var(x) = E(X) -μ² pf: LHS = E [(x-μM)²] = E [X² = μx + μµ³] Theorem: abEIR = E (x²³) -> ME(X) + μM² 2 = E(X) - μ² = " RHS. Var (ax+b) = a var(x) pf: LHS = E { [ax+b= (aμ+b)]"} =E[a²(x-μ³] = > • a² E [(x-μ) ³] = a var(x) = RHS. : Var(b)=0, bEIR. _ @ E(b) = b E(ax+b) = a E(x)+b. Have a nice time
ページ10:
10. ue of x) Have a nice time eg: : Var (x) = 8, E(X) = 2. Date No. Find El-2x+5) Var(-2x+5) E(X) @ E(5) © Var (5) DEL-2x+5)=-2.2+5=1 © Var (-2x+5) = (-2)²- 8 = 32. © E ( x ) = Var(x) + μ² = 8 +4=1> (5)=5 Var (5)=0. Def: the rth moment of (the distribution of) X about the origin. E(x) = sx f(x), if exists. r=112..... XES St 13: E(X) = 1st moment of X. E(X) = 2nd moment of x E(X) = 3rd moment of x 階乘! Def: the rth factorial moment of the dist) of X. r項 I E [ x (x-1) (x-2)-(X++1)] = xsx(x-1xx-2)... (x++1)· f(x) XES 13): E (x) = 1st factorial moment of x nd E[x(x-1)] = 2" factorial moment of X. (NONE) = Var (x) = E(X)-μ =E[x(x-1)] +E (x) -μ². = N₁ (N₁-1) = (x-2/ \n-x) eg: X ~ hyper (N₁, N₂ ; h) DE (X) = ". N₁ Ni+N ✓ Var(x) = N(N-1)/N1-2) E[X(X-1)] = XTX). (xx\n-x) y=X-2 Var (x) = n N₁+Nz N₁+Nz :) ( 1 N₂ (M-2) (N2) = (MAND)(NANGI) (NIANZZ) 1-2 (1-2) (1-2-4 N(N-1)(-1) (NN) (N,+N₂-1) Y=0 N NI+N2-Y 1-2 h(n-1) GEE-JUMP
ページ11:
No. Def: the moment-generating function of X. ho, llch Elet*) exists. + Date Then the function of ± defined by M(+) = E(**) M(t) = E(etx) = x+s ex. f(x) is called the m.g.f of x. 2x-1 eg: f(x) = 1 x 6", x = 1, 2, 3, 4 0 elsewhere. M(+) = E(etx) = 1·16 + at 3 Theorem: (properties of mgf) Find the m.g. f of x. 4t7 16 + e. 16 (a) X and Y have the same distributions. <=> Mx(t) = MY(+) (Uniqueness of m.g.f) (b) M(0)= | (k) (c) M (0) = E(X) k = 1, 2,..., if E(X) exists. M (+) = E ( * ) = E [ = x + 1] = M(t)=E(克)=E[嚚均 E(X) k x + (31): M10) = E(X) M'(0) = E(X) (M" = E(X³) eg: Mx(t) = eft Find the pmf of x. fix=f x=8 10, elsewhere. t eg: Mr(t)= +0. fr (y) = 1 ½, y = 0 13, y = lu 7 ・ 0, elsewhere..... Have a nice time - 1 at 15t eg. Mε(t) = je + Je Since Mz ( 0 ) = 3 + 1/3 + 1 M₂(+) is not a mgf. Have a
ページ12:
Have a nice time -t-5t eg: Mu(t) = + e + + ½ + ½ * space of U=f-1-5, lu3} X ~ Geo (p). f(x)=(l-p). P, X = 1. ²...... E(x) = = + \ @ Var (x) = E (x² - μ² = E [x(x-1)] + E(x) — μM². E(x) = 1 / 1 x (1-p) p = 1/2 · p = +/ X- E [x(x-1)] = =₁ x(x-1) (1-p) p X-2 = (x =₁ x(x-1) (1-p) ^ Jll-p).p = · 13. (1-p) · p = (1-p) √ ⒸM(+) = E(etx) = tx + { (1-1) P [ep]} et(1-p) + I-P (= e^\l-p), e (1 - p) < | Pet Date = 1-(1-plet, t< -In (1-p) No. 無記憶 Memoryless property - p(x> a+b/x>a) = p(x>b), abEIR 若x~Geo(P)則入只有無記憶性質, a p(x > a) = 1 - p(x≤a) = 1 - 1 1 (1-1)* p = 1-1-(+) - R = (1-1)^ LHS= P(x>a,x>a+b) P(x>a+b) 11-119+b P(xx) = (x32) = (1-3)^ = (1-p)² = p(x>b) = RHS. GEE-JUMP
ページ13:
Date No. CCCC Have a nice eg:X: 1: X= # of people that you have to ask to find X-Geo as you are Someone who was born in the same month (Assume that each month is equally likely). Find DE(x) = = = =12 @Var(x)= p(x >15) = (1-3) 15 (x75\x10) = (1-5)'s p(x340|x>10) = (1-1/1) "0 eg: Mx(t) = = =² + < luz, Find the dist. of x. By the uniqueness of m.g. f x~ Geo (s) 2-4: The binomial dist. success 6x2 Bernoulli experiment - 2 outcomes (failure * BX ✗= P(x=1)=P D. KAY, p (x=0) = 1-P. X~ Ber (P) E(X) = P_1.p=0· (1-p) = ! b'lip) Var(x) = p(1-p) F(x) = [[(^)] = ( ~ p+oll-p) = p² = p-p² M(+) = pe² + (1-p) Ele") = e *pte²°(l-p) += Y = # of successes in n indep. Bernoulli trials, each of which has the same prob. of success, say f. Y~b (rp) n-y (p.m.f). frly) = Cy p" (1-1), y = 0,1,..., n. n-y check: 1 (y) p³ll-p)^^ = [p+ (1-p1]" = 1 By = z Have a nice time | p(x=8)=
ページ14:
d. = you are Have a nice time E(Y) = np.... Var (Y) = hp (1-p) Date No. Mit) = Ele² = ( y=0 n-y n-y = 1/170 (1") (pet) (1-p) ^ " = (pe² + (1-p))" Mit) = h [pe² + (1-p)]" pet ⇒ M'(0) = hp = E(X) M'(t) = n (-1) [pe² + (1-p)]" (pe^) + n [pet (ip)] - pet M"(0) = n(n-1) p² + np = E(X) th Var (Y) = E (x³- [E(x)) == \(^_^)p²+np-hp² = -hp+np=np (1-p) eg: Mx(t) = (0,15 e²+ +0,25) eg: p(x=8)= p(10-x=>) = p(10-x≤2) Find the dist. of X: X~b (12,0.75) E(X) = 12x0,75=9 ③Var(x) = 9x 0,25 = 255 X = # of seeds that germinate in 10 indep, trials. p(germinate) = 0.8. 11)p(x≤8)= ( p (x = 8) = “不会發芽. X~b (10,0,8) 10-X ~b (10,0,2) 10-X 0.87012 0 (x²) 08 % 1 * p (x≤8) = p(10-x>>) (2) P (X = 8) = ( 1 ) 0.8% -p(10-x≤1) (3) E(X) = 10.08=8 0,2 (4) Ox = √8.0₁ = √1.6 # 註:(1)Y~b(nmp),Y=成功的次數. " = 1-p(10-x≤1) =1-0.3758 h-Y= 4 x R x = n-Y ~b (n, 1-p) relatively small. b (n, NA+N=) N · bln N₁+N₂ (2) N₁, N₂ are large is hyper (N₁, N₂; n) N₁ M = N₁₂ Var(x)= N N₁ Var(x) = h = NITN₂ GEE-J Ni+Nz NI+N₂ NITNEY
ページ15:
D Have a ni CCCCC A exercise mmm+1 (3) X1, X2, +3 No. identically independent. b(1,p) · Xn iid. Beri (p) Y = X + X2 + ......+Xn(Y=n次实驗几次成功) To →Y ~b (n,p) 眾數 (4) The mode of the dist. of Y, Y ~ bcn,p) 高斯. fim 31 符号. D femi) ₤(m) 711 f(x) n-y fr (y) = (^) P" (1-p), y = 0, 1, 2, .-, n [[(n+1)p], (n+1)p & Z (n+1)p-1 x (n+1)p, (n+1)PE Z 2-5: negative binomial dist. (Pascal dist.) Y = # of Bernoulli trials needed to obtain r successes P(success) = p. -, (y-), y Y~NBLY P fr (y) = (1-1) p² (1-p) · P 4+ K-1次成功 y-r次失敗 4th XID y-rrr-1 y-r (-) (P)-P.P y-r. = (+-) P (1-p), y=r, r+l, rt2.... Recall: Maclaurin's series expansion. h(W) = & wiseries expansion == "ki Wk | w/cl Eh (w) = (1-1) = 0 (k+(-1) wk - negative series (= 30 check: (-1) P² (1-1)* = | k+r-11 Ek=y-r [ ("K") (L-p)")] p² = [1-11-p)] = p² = 1 Have a nice time
ページ16:
b) Have a nice time E(Y) = (1-1) P² (1-1) Date y-r I J. ("-") P' (1-p) y-r y-T = r · √ √ =³r (~1) P² (1 - p)² + Fik = y-r = p² = (+ + (x+1)-1 ) (1-p)"] k = r.pt [1-(1-p)] (r+1) = ✗ ㄓㄓ r(r+i) 1-6(6) 6 r(r+1) (r-1, E[Y (Y+1)] = √ (y+) (+) P (1-p) y-r = (x+1) | | = (1+1) (1-p) K+(r+2)-11 k = y-r = v(x+1) | | (+(-1) (1-p)^\] k (+1) = r (r+1)P" [1-(1-p)] = Var (Y) = E[Y(+1)] - E(T)-[E(Y)]" r(l-p) = et(s) tr e ty ·1(171) y-r My(t) = E (et) = ₁et (1) P(-) = y=Y tr et pr. f (-1) ["\\-p)] y-r k=y-r = (pe²). (kk) [ \\-]+] < K=0 + = P(+)" [1-(1-p)²+] (\-p)e* </ Y~ NB (r,p). = E(Y) = ₤ Var (Y) = HH-P) Pet No. X~ Geo (p) = NB (IP). M(t) = [1-11-ple³], [1-ple < | (+<=lm(1-p) Ì: (1) X₁, X2, Xr Iid Geo (p) 令Y= Xi + X2+...+ Xr (r次成功实驗次) →Y ~ NB (rp) E(N) = E (X₁ + X 2 + ··· + Xx ) = E ( X ) + E (X 2) + + E ( X ) = = GEE JUMP
ページ17:
Date No eg: Mylt) = [100 et ]. Find 1-0.30 the dist. of Y: Y~ NB (5,0.7) ③E(Y)= 5 5.0.3 Var(Y) = 0.09% 罰球 eg: X = minimum number of free throws to make a total of lo shots. p (shot) =0.8. DX~NB (10,0.8) @p(x = (2) = ("a") (0.8) (0.2) © E ( x ) = = 10 x=10(1-0,8) 10.8) 2 eg: Given E(X) = 0.8, r = 1,2,3..- Find the dist. of X. E(x) k Mx(t) = = k! 0.8 10.2, x=0 = f(x)= 0.8,x=1 elseshere = = 1 +0.8 (et -1) ot =0.2e+0. eg: F(x)=>", Y= 1.2. Find the dist. of X... Elx k M(+) = k=0 ki t = = 0 3k k = kit 3t est (at)k f(x)=11x=3 To elsewhere fw=L Have a nice time CCCCC e ↓
ページ18:
Have a nice time 普松 2-6: Poisson dist, Date No X = In an approximate Poisson process, the number of changes that occur in a given interval. Approximate Poissom process satisfies: = (i) # of changes occuring in honoverlapping intervals are independent. (>= X 11 X 2. (ii) P(one change in (w, w+h)) = λh, 7>0. (iii) P (at least 2 changes in (w, wth)) = 0. 已知單位時間,發生入次 n等分,使得每一等分中,最多 發生一次,每等分長度方 P (one change in (w, with)) = A x ~ b ( n ) lin h-200 (2)(六)(1一六) M-X lin (n-1)... (n-x+) ** 4900 nx X! ° ** (x)= h(n-1)(n-2)(-x+1)(n-x)! x! (n\x)! (1-A)" (1-4) = ✗! X=0,1,... X~PIA) ex xx f(x) = x^x = 0, 1, 2, 00 E(x)=x =λ (check: 0 you 4-6) X=1 (X-1)! = ^ y = 0 4 1 = 1. Var (x) = E (x(x-1)] + E (x) = [E(X)]² = \\_ E[x(x-1)] = x(x-1) xx =D y=x-2 = λ² [ 1-2 (X-2)! - (X-2) X! = I tx e\" 一入 de ✗! = e 00 I Thesx X = X ! tiến M(t) = = e.e = x² GEE-JUMP
ページ19:
A DVD Warra ! : (1) As A >10, Poisson n-300, p«< Normal dist. (2) X ~ bln.p) ^ hp = 1 > P(A) lin (1) P (1-P) n-0 Date No. 福 Have a nice ti n2100 npc 10. X! (3) In the same Poisson process. 瑕疵 X = # of changes in the interval with length w. Y = " If X~ PLA), then Y~ P (Kλ) eg: Flows on a used computer tape occured on the kw Ch3 3- process, , what's the dist. of x, average of I flaw pew 1200 feet. In the approx. Poisson # of flaws in a 4800-foot rall ? X~P(4) @ P(X ≤ 2) = 0 =0.238 ✗! Ⓒ p(x = 5) = = = P(xss)-P(x≤4) = 0/85-0.639 E(x)=4 = eg: In a large city, telephoncalls to 911 come on. the average of 2 every 3 minutes in a Poisson process. What's the prob. of 5 or more calls of 5 or more calls arriving in a 9-min period? X= # of calls in 9-min period. X~P16) P(x75) = (- p(x≤ 4) = (-0,285. Have a nice time.
Comment
Log in to commentRecommended
Sejarah Browsing
Recommended
Undergraduate
數學與統計
袋中有三金幣,五銀幣若袋中取幣兩次,每次取出一個,每個幣被抽到的機率相等取出的幣不放回,求下列各事件的機率 (1):第一次與第二次都取到銀幣 (的):第二次取道金幣
Undergraduate
數學與統計
想詢問一下此題的做法是用什麼分配有試過用卜瓦松跟超幾何,但感覺都怪怪的,不知道卡在哪裡QQ
Undergraduate
數學與統計
統計學 二項分配求解
Undergraduate
數學與統計
求第一題和第二題解答算式
Undergraduate
數學與統計
請問這題的 三次都沒抽到紅球的機率為(3/10)*(3/10)*(3/10) 那想知道十分之三的「三」是什麼?
Undergraduate
數學與統計
不好意思可以問一下!這題有沒有會嗎!謝謝🙏
Undergraduate
數學與統計
以下是心統的題幹和問題 想請問這題要如何計算? 謝謝!
Undergraduate
數學與統計
求解!!謝謝各位
Undergraduate
數學與統計
機率題目,看了100次還是看不懂
Undergraduate
數學與統計
學長你好 我換手機號碼 可以再加我line嗎 想問你........
讀書慢慢來就好不急
line被鎖了,不能回你咯
數學一直是我的弱科,我有時寫一寫就會開始失控,怕對你發脾氣,像你這樣好的大哥哥會厭煩😣
不會啊...怎麼這樣問?