數學與統計 大學 6天以前 這題偏微分幫幫忙了🙏 Question_10 If z is defined implicitly as a function of x and y by the equation 2x² - 3y² + z² + 6xyz = 1, then Əz ax 2z+6xy 1. 4x+6yz 2. 3. - 2z+6xy 4x+6yz 4x+6yz 2z+6xy 4x+6yz 4. - 2z+6xy 已解決 回答數: 1
數學與統計 大學 6天以前 有人解得出這三題偏微分題嗎? Question_2 1.3x4y² ex¹³ 3 3 2.4x³y³4x³y³ 3.3x4y²e 3x4y² 4.4x³y³ ex¹y³ a dy (ex²y³) = 已解決 回答數: 1
數學與統計 大學 1年以上以前 大二統計學 請問畫黃色的部分要怎麼算 268 CHAPTER 6 The Normal Distribution and Other Continuous 6.5 Given a normal distribution with = 70 and o = 20, what is the probability that a. X > 110. b. X < 10. c. X< 70 or X > 130. d. Between what two X values (symmetrically distributed around the mean) are 70% of the values. 8 6.6 Given a normal distribution with μ = 30 and σ = 4, what is the probability that a. X > 38. b. X < 25. c. Find the X value such that the area to the left of X is 5% of the total area under the normal curve. d. Between what two X values (symmetrically distributed around the mean) are 40% of the values? P(Z > 2) = (1-0,9094 = 00228 P(25-1.2²) 011056 27:25-30 4 1125 5x1165 Z=30+4 1-905=0.95 (₁28-1 46.64 = 3 待回答 回答數: 0
數學與統計 大學 1年以上以前 想請問一下這題怎麼寫? 感謝各位大神🥺 2. The following table summarizes results from an experiment in which subjects were first classified as smokers or nonsmokers. After these subjects were given a treatment, later they were again classified as smokers or nonsmokers. After-smoker After- non-smoker Before- smoker 40 14 Before- non- smoker 5 80 2-1. How many subjects changed their smoking status after the treatment? 2-2. How many subjects appear to be unaffected by the treatment? 2-3. Using the appropriate frequencies, find the value of the test statistic. 2-4. Using a 0.025 significance level, find the critical value, and make your conclusion. 2-5. Based on the preceding results, do you think this treatment is really benefit to help people quit smoking? 待回答 回答數: 0
數學與統計 大學 1年以上以前 請問c7.的domain和range 是這樣寫嗎? f(x1= Di R x 2 -2 YER X20 TECH TUTOR is the range range of f1 is the domain of f, which 2.00). ✓ Checkpoint 7 Worked-out solution available at LarsonAppliedCalculus.com Find the inverse function of f(x) = x² + 2 for x ≥ 0. After you have found an inverse function, you should check your results. You can ƒ-¹ are reflections check your results graphically by observing that the graphs of ƒ and 尚未解決 回答數: 1
數學與統計 大學 1年以上以前 (大一微積分) 請問這題這樣寫正確嗎?背流程寫的😅,圖一為需用到的定義 正確的話,想問紅色圈圈的1是怎麼來的? DEFINITION Let f be a function defined on some open interval that con- tains the number a, except possibly at a itself. Then we say that the limit of f(x) as x approaches a is L, and we write lim f(x) = L x→a if for every number &> 0 there is a corresponding number 8 >0 such that | ƒ(x) − L| < ɛ if 0 < x-a <8 then 待回答 回答數: 0
數學與統計 大學 1年以上以前 朋友,想問一下你的數學導論筆記本是用那一本書的呢?至少可以了解多一點點,來自清華大學的同學,謝 Proposition (Statement.). Def. A proposition is a sentence that has exactly one K true value. It is either true, denoted by T, or false, denoted by F 2 ex "7² = 49" true value = T. "2|7" True value = F. "x²= 36" not a proposition. (proposition form). "She lives in Hsinchin not a proposition. 11 尚未解決 回答數: 1
數學與統計 大學 約2年以前 求解第3、4題🙏 證明題總是卡住... 3. Let Bo and ₁ denote the least squares estimators of Bo and 3₁. Define SSE = Σ(Yi-Bo- i=1 B₁X₁)². Show that (a) E (SSE) = 0², (b) cov(Y, ₁X) = 0. 4. In Section 10.4, we defined a test statistic where s² = T = VSEZ SSE. In addition, it is known that T~: n-2' (a) Show that (1) can be re-written as 1 tn-2. T = r√n-2 (1) (2) (b) Use Part (a) to test Ho: p = 0 vs H₁ p 0. [Hint: (2) can be regarded as a test statistic under Ho.] 待回答 回答數: 0
數學與統計 大學 約2年以前 請問第二題怎麼算 麻煩詳細的算式 謝謝! (Disintegration)」? 三、計算題 1. 一個靜止電子的質量相當於多少 MeV 的能量? 2. 試計算“C 的質量虧損(Mass Defect)?能量單位請以 MeV 表示,又已 知 “C 的核種質量為 14.00324D(daltons)。 3. 下列能量單位請排出其大小順序 ? J, MeV, eV, Kcal, cal, Nm, erg。 待回答 回答數: 0
數學與統計 大學 2年以上以前 我想請問 原本fn只在所有compacts上一致收斂 D裡面會不會也包含沒辦法closed and bounded的部分 但我最後要證明的卻是在整個D上f都連續 這樣①③的選擇會不會只證明f在D中的任何compacts連續呢 如果會的話要怎麼改善證明 (高微證明小白求解.. Question 2 [10] Let {fn (2)} be a sequence of continuous complex functions defined on D C C and f(z) be a complex function defined on D. Prove by e-N definition that if fn(z) converges uniformly to f(z) on compacts in D, then the limiting function f is also continuous. 0₁0. fn 3 f for z For every Z in K E > = N(6) € ₁ s.t. Unz N₁ | fn (2) - f(z)] < 1/10 N= . in any compact sets K≤p. @fn 75 20, 2 820 sit.lzx]<8>lfe)-f(x)]<- continuons for z in D. For every z, & in D. VE>O, we choose the above N and f if Iz-*|< 8, then s.t | f(2)= f(a)| = |f₁z) - fn(z) + tn (2) - fn(x) + fn(x) – frasl ≤ | fn(z) - f1z)| + | fn(²2) - fn(x) |+| fricas) _flox) | = D E 1/4 + 1/3+1/²/3 = 3 =.E. 尚未解決 回答數: 1