ノートテキスト
ページ1:
数列的有关概念 1831. joj, an = ±² - 13.2"+2, ^EN * 14) 6, -66, -666,66 -.. 5. £ 4. %£ +4-13.2+2=-38 n+1 Ax+1=4 -13.2 +2 12) 450=4"-13-2"+2 -13-2-48=0 12-16) (2+3)=0 2^1^2-3 (4) n4 ∴30是数列的第4页 f. Q₁ = (-1)^-1 & (10 -1) REat 「例4.根据下列数列的递推公式,写出它的前4项,并且内其 通项公式 1) Q₁ = = = a + (2n-1) a=0 A₁ = a₁+ (2-1)=0+1=1=" 03= A₂+ (2x2-1)=1+3=4=2' A = 2 + (2×3-1)= 9 = 3° G3 = 04 + (2x4-1)= 16 A An= (n-1)* REN* 例3.写点下列各数列的一个通项公式 4 3x5 3x7 A: An = 12h+1]/2x+3) hear* 7x9 3,5,9,17 32- Q = (-1)^ 2n+1 nan =(-1)+ B) 0₁ = 10 = 0₁₁ +2 हो 0121 10. => 203 4 == 30+ = _L
ページ2:
等差数列与等比数列 Dm-1++ 6. On-On- = d (132) d可以等于0,每一项 On= (MEN) a.1-0.=d(d是常数) 都可以加 as =>2) q (q) 例1.若0.b.c成等差数列试探究方之也称为学差数: 等差、等比数列定义是证明教列等差、等比的主要依据 的充要条件 .若数列10.j为等差数列,公差为d,cro且CII,则数列 解:∵0.b.c成等差数列 2b=a+c Ca 40cratch+24C (6-0)=0 a=c=bt0 and a. A₂, 04, 0.,... Aen... 0,0,0,--... 为等差(比)数到 XQX² - 20 (*) aja.. do (V)求证,这些方程有一个公共报 4. 等差中项与等化页 如果a.b.c房等差数列,那么我是ac的等差中项 zbz atc 如果a.b.c等比数列,那么称b是ac的学比中项 G=±36) :>= An+Anto tiles Anx² - (Antlitz) X+On+z = 0 (x-1) (linx-lin+2)=0 4x=1
ページ3:
2) 872 the X = Xn-f= On+2-An an -12 On zd 151210 € | | aj 4 ap=q, aq=p (p+q) #apreq= Tap - aq + cp-qld q=p+ cp-qld d=-1 : Ap+q= ap + (p+q-p) x(-1) =9-9=0 - *j** Они вы 5.通衣公式及推广的通项公式 Q-Q+ (n-1)d An=am + (n-m)d An=01944 例1.有四个数,其中前三个数成等比数列,后三个数成等差数列, 1626x9 => 9 = 27 - 9 = 3 04-02-9-6-354 丑第四冊数的和是16,第二三两数的和是,求这四个数 4 x, y, "y, 16-x ⇒ (y(34-8)(12-y) 例3.若首页为主的等差数列从巷0项起各项都他大口 比数列的公差d.的取值范围是 1 2 (12-4) = y +16=x x=34-8 ارت 417-8 01>1 +9d>1 => => 1 x=16 1,3, 9, 15 of 16., 8. 4, 0 1318+2 dsto
ページ4:
1例4.公差为0的等差數列50aj4,0,2,jon)的部分例1.若凸多边形的内角依次成等差数列,其剥等于 欢按原来的顺序由小到大床等比数列{angk k₁ =3ks= q #Qk Baka 120,公差等于5°,则多边形内边数是 (n) 180° = n. 12" + (n-1)x5 2-25~+1400 Ab X = 120 +155718 = 12" + dx = 16" (2+2d) = 2. (2+10d) d2-3d=0 d to dez 032ad == 24 (12) = 0·4^4 =2.41 == (k₁-1) x 3 2-4534 3(x-1) kr 3-4 7. 等差数列為等比数列的性质 m+n=p+q santan = ap±aa- #m+n=ptq of am an =ap.aq 6.等差、等比数列由前顺和 (-) Sr = nait n(at) 8.05 (0) 0.+++ak akakast...+Dak, Anker + A+++...+ask,.... 为等差数列 Sn = (naq=1 1-7971 15) 1. £$2714 5100, Soo-400, BJ S;O= Art Art - 40. O+ + + + A2, Aust 100 300 x 2·300-100+ X =>x=500 :. 536=900
ページ5:
* 5 Art Au+-+90=2 +++Q=10 03 + x + - +30= ? 10² = 2-X x=50 (3)_ D₁ = = Amts = 30m +1 -=3(-a) -α-30-30 a = 30-20 =30+1 And+3(0+1) 9.由递推公式求通项公式 等差数列可以用递推公式给出: Q₁ ==+ (NA) ==lp of 0.-9. Ann = ang CRENT) + ½ = (+) 3 = (+1) 3^-1 (EN) On a=pan+qcpq [总可以写成: am-a+por-a),待定 in that th (4) 0₁ =3 例,由下列递推公式术出数列的通项公式 ") Q₁ = a +1=3 70-0-3 2-3 Q-2 On = 2+ (n-1) (-3)=-3n+5 VEN*) G = Gr²+1 数列10]是等差数列 0-01 两边平台 A = A+ (n-1) = 9+ (n-1) × 1 = +8 (2) 0₁ = ± 0 =30x 03 -93 O₁ = -3 (EN)
ページ6:
A Внос (5) 0₁ = 0₁₂ 2011 (132) 我到 是等差数列 1= | | + (n-1) d = 2 + (n-1) = 2n On In CnEN*) 10.05. 16) D₁ =3, O=0 (MEN*) Igams = 19an gamgaa Igen = 1909 (193) - 193 On 3 (MEN) 酸压对数 | 151 2. A. J. A₁ = 2, A = Axt = ? Al-An= *(**) A₂ = 0, + ½ 03-02 ± + Ap=2+ - =3-( =2 Cin-(S₁, R=1 () = On = an On = | Sn-Su-t, >, 2 Tican+) 例1.已知数列前~项为Sn= ², nent of Q₁ = Sn - Sn-1 = [2(-1)+(-1)]=- 132 Onet) 1-111 c. Anti-Ons (nt)-폽 - (풍~-품) = 풍 1 : * {aj £d a
ページ7:
Sa., A., as 1900(b 是等差数列 11) 0₁=5₁ = 7 .: S.-S₁= (4+++4)-7=5 03-53-5₁ = (946+4)-12-7 12) 72, RENT A SA-S D= 7, n=1 ant anti n°72-4-[(4-1)*+2(n-1)-4] 24+1 -2)+(24+1)=2 (32, EN) :.. $2 =-23 ABR-12 An=13R NS2, MEN³ / 4 BR-124=13 4B-1-12A-₁ = 13 (-1) ₤ 0-4(B-B-1)-12 (An-Ax-)=13 4b-12=13 4bn = 12 (-3)+13=-12-5 bn = 124+5 (472, MEN*^) x446-120=13x1 46₁ = 120₁+13= 12(-5)+8=-30+13=-17 b₁ = -2 • bu= -12=5 (non) 7,2 NEW* /= (O₁ + 2)² D - On: 1 (0 +2) - FC +2) - 80 m = On + 40n+ 4 - Q-, -40-1 -4 An – Am – 40-41= (A+) (Q-Q) + (an + An-1)=0 (Anton) (On-On-1-4)=0 Anto On-On-14 数码j是等差数列 --On-On-420
ページ8:
*** 1. 裂低相法体 b-on=d, B 夜 例:知数列anj的通项公式 例:求下列数列前几天和 111, 112, 143, 1724344 ས : ཊ་ ། trk4 5+ ་ ་ 4 དར ། ། ག Sr = ++++ An = 10-2 ||+|+|++ (al An = 10-2×70, Lεnss S=101/+10/+10/ +10-09-11 36 new of Sail+10+10=+++ || =A+++++05-06-07-08--- >(t+tas) lata=+-+Qs) - Q₁ - Q7 ---- (2) =2(1-1) A = (2-1) (2143) = (-) して一主)+(す)が.. - ½ (1 1/2 - 22 - 24 +23) (43) (24+2)-(2013) = 2 0915-257- Hon ===9x+40 Sn = 19n-n" ISRES EX 26
ページ9:
5.分奇数,偶数 形如Darkanj的数列,其中10.j为等差数列,后」等比数例:设等差数列汤项为bn=3-2n 列,时可用错位相减求和,等比数列求和为其特例 1=3- اسلام 203 + 2n+ 。་ +++…+25 21-3 21-1 2n-1 0-1 2h-1 ++ 2n-1 4.例序相加法:如等差数列前n项和公式的推导方法 例:该开区,利用课本中推导等差数列前n项和公式 +(-8) + (-7) +-+for+-+f(8) + f(9)61 PS= fr - 9) + (-1) + fi-6) + + fix. + fist fig) S = f(9) +f13) +f(7) + ... + (1) + ... + √(-7) + -√(-8) fort+x+ + + + = + + + + 25=18-1=95 | #Snabbe-b2b3+ b3bq --- + (-1) - baby | S₁ = bibe - beb3+bshq-~~+br = bacb₁-b₂+ba (bs-bs)+-+be cban-bat Alba+be++b) 4 bath) =(1+3-2) =-20²+2n b-b1 [3-21-1)]-[3-2(n-1)]=-4 S₁ = SAY +baba -2(-1)+2(-1)+(3-2) [3-24 =2m²-2n-1 ]an -k4-1 1 奇
ページ10:
Y 6.分段 -232+1 1510 1675 JES, ENS=Art Act an= -4)+3+3+3 C1- --100 of 1- 3-310 -100+ (-121-34) ds, an 300 t, 2 x=-2 o A-13+(-1)(-2)30 A = 13+ (n-1+1) (-2)5 ** Qn+170 (2(1-4)5- 35 115112 (-) 例2.在数列{0.j中、ニュ(ベーに)取最小時, 12. 等差数列前n项的最值 -dna-din • 150 dard予定数 当do时,Sa是关于几的二次函数,且常数项为零 San`t bn. 11. 241 19.147, 9₁ = 13, S2 = S₁ #4= 大值时,入的值 30+ d=ait d 80+d= x13=-2 Sn = 1413+ ^(n-1) (-2) = -n+14^ =-11-71749 (S.) max=49 M=112 公差d20,10.j是递增数列 Ja, soat, nithe ar net
ページ11:
3.一道题 √15] Sony = Art Art SF Son = (2n-1) and 10 + Alan-2 +2m-1 S-1 = 21+ +-+ A₂+A₁ Sony = (Aon-1+Q₁1 (2n-1) = (2n-1) (20n) 1. Sn-1 = (2n-1)Q 差数列値ib前の坂本和Ta n S-1 = (2n-1) On_ 1. Tany = (2n-1) bn. On S 2(2n-1) bx Tax-t = 2/27-1)+1 3-1 Skn zn In = km (3n+1), kt Sn-Soak-2k(-)" 24-1 = 2 (133) | bij b₂ = 0 -1 (new) 1)术数到100中值最大的和最小的友 | bus - bu = ax = -1 - α== A1 = 2- | 2) b₁ = α = = - b= - +-4-1=^- ^EN") === I An = +1 cment ¥15n53, NENO V NA, NEN 1=3 (an)=-1 (a) = Qn.
ผลการค้นหาอื่น ๆ
สมุดโน้ตแนะนำ
คำถามที่เกี่ยวข้องกับโน้ตสรุปนี้
News
ความคิดเห็น
ยังไม่มีความคิดเห็น