ノートテキスト
ページ1:
x = x ax = b <=> x = log₁ b log 10 = 1 log 1=0 log10x = x 10/09 - a^=6<=>x=10gab 1. (1) 2² = 8 => 109 28 = 3 第2章 指數與對數函數 R) 5² = 125 => /og = 125=3 131) 1092 + = -3=> 23+ (4)log 0.001=-3(=> 10-3 = 0-001 对权有意義 ①真b20 ②底权a>0 ③底权ax1 2.若对蚁10gam1 (5-2X)有意義,則x的範圍? logx-1 ①真奴5-2x20 ②底权[X-120 4x-1=1 <= ①② <x<x≠2 K<X logal = loga ax = x alogax loga G=1 3.11) 10g 10000-4 log 0.0001=-4 12) 3/093√2 = √2 loya X xx loga a=X = laga a = x =X = x logars = logar +logas logas = logar-logas logar" => "logar (1) log 354 +10936-21932 (2) lag 63-2logb+5log 2 - log 1443 4. = log 3 (54x6) - 10932² 27 = 1093 154 x83) = 109381 = log 334 = 4 x 10933 = log(62×32425. 36 =log/00 =2# +4 17
ページ2:
Togas C7O C#1 Toge log 2 = 0.3010 範例 『前國際例 5.10923 =? log₂3 = log103 logo 2 log 3 = 0.4771 0.4771 =1.5850 log=0.8451 0.3010 15=0-6990 n# 0 6. lega blogab minER = (1)/09324 = 109332² = = 1992 2 = 1/1/11 (2) log | 2 = logo-32 = = = x/0922 = = 1/12/1 logab log₁ α = 1 => logab = 10 logia 7. (log = 3 + log49) (log 3 4 + logą 2) 3 # 2') = (log = 3 + log = 3)|log 3 2² + log 3? = (log2} + \ / 10923 ) ( 2log = 2 + ½ log; 2) Er) = (2x1023)( {x10932) 某次地 試問芮] = 2 x x log₂ 3 x 10g 32 倍?(整 代入 41 = 1 = 1× × 1 = 5 logablogi C x loged = logad = 7. 10923 logs 49 x 109325 x logn4 Ecg = logz 3 x logs 7² x log 35 x logn 22 =log23 = log 23 x 2log 57 x 210g35 x 2logn 2 = 2x2x2 x 10923 x 10g 35 x logs 7 x logn² log = 8 x log₂ 2 =8
ページ3:
, log f(x) = logg (x) => (fax) > 0 {g(x)>0 (fou = g(x) 9. Blago (x-2)+1096 (x-3)= 1 真双70 (1)真5x-220 底权>0 权x-3>0 1x23 底权$1 (2)对权相加二真奴相乘 1096 [(x-2) (x-3)] = 1 =10966 = (x-2)(x-3) =x5x76-b 725 XE x(x-5)=0 RE X=0/50 # 1. ^^ = log = N= b = log = 3 #81ª + 26 = ? 3² = √5 b √√√² = 3 81+26 2 =(√√5)+(3)² =25+9=34# 2. alog 520 2+ blog 520 5+ Clog52013=3 $0₁+ b + C = ? Blog sao 20 logo sloga = a x1+x*+ = 109520 (2ª × 5 × 13°)=3 logars=logar + logas 真相x a 5203 = 2ª × 5 × 13° 51520 21104 2152 2126 73 2³×5×13 =12³×5×1 (2³× 5 × 13)³ = 2² × 53 × 13³ a+b+c =9+3+3 = 15 #
ページ4:
log 108 = log (2² x 3") 3. log 108 = a log 24 = b xa-blog 22 #log 2 = ? a=2log 2+3log 3-0 = 2log 2+3 log 3 log 24 = log (2³ x 3) -6=3log 2+ log3 - 0 ②x3-①消掉1093 2 = ·Blog 2 + log3 3b-a=9log 2+ 3log3-2log 2-3tag 3 =7log2 log2=3b-a 4. log₂ 3 = a log37=b 1xa.blog4256 = ? log4256 = 109256 109242 = = 310g 22 +ab 1+a+ab 3+ab Tatab# # 1092(2³×7) Toga (2x3x) = logz 3x log = 7 = log₂²² + Tog. 7) = saxb Tog 2 + logz 3 + logz ↓ ↓ a 5. 解方程式 9x+2x3x+1-16=0 目標:一元二次方程式 13²)x + 2x 3 x 3'-16=0 (3x)² + 6x3x-16=0 (3-2)(3x+8)=0 3x=2 => x = log32 - # 3x=-8 => X 115 BX>0) 6. AF = log x 100 - log x + 1=0 logx 100 = logx 10² = 2109x10 log x 10 A log, x ₤1 BU EX logab x log, a = 1 3 log10 x = + logx 10 = = 1 = log x 100-logx+1 =2/0g x 10-logx+1 =2x+-++1 t # = -++1 X = 10 1100 5×+ => 2-+²++= 0 ↑ (t+1) (t-2)=0 += -1 = log₁ox
ページ5:
stag}" 對數函數及其圖形 y=f(x)=10gax稱為以D、為底的对权的权0、200x1 1. f(x)=10g5x y=f(x)=logax (1)f(25)=5 (2)f(1) = 0 (3)f(六)=-2 (1) x (2) 11,0) *為正實权 a>1 嚴格遞增 OKOKI 嚴格遞減 2.求作y=f(x)=10g2x的图形 2 x 12 4 2 + >x 2 y-2-10 2 1 4 2. a71 凹口向下 0<a<1凹口向上 *圖形恒在由右方→X值為正 *y軸為漸近線 3.11€ = log X 1 y-2-1 x 9 37 3 2 0 2 39 y=logzx y=log3x → 112345678910 *底权越大 y=logax 與loga(-x)的圖形对稱於軸 y=logax與-10gax=10gX的圖形对稱於X軸 4. 1Ey=log₂ X y = log(x) -y=logaα D y y=logz1-x) y=log=x y=log2X x|1 2 4 yo 2 →x 越右越低 -y=log2X x111214 y=10g2(-x))→真权-x>0 =y=log₂X x|-11-21-4 81-11-2-4 X40
ページ6:
y= logoXh1 => y = logo (x-h) y = loga X ±4k 1 = y = k + loga X 1111 y=log = (x-1) y=log = x+2y=log₂ X by →右移 >上移 y= log₂ x 2/6/7/2/2 (上) (右) y = log XY 0 12) y= log₂ x 548 31 => Y=log₂ (x-3) 再下移5單位 =>4=1092(x-3)-5 f(x)=g(x)的實权解個权⇒y=f(x)與y=g(x)兩图形交点的個數 6. log X = X- | 10?txh} ? Y 21 y=1092x x1112141 y=x-1 X12 Yo 271 loga X>0 演練 序 a> 10 <x<\ => loga X<0 7.哪些对权值>02 |0<a<\/ x> => loga x<0 0<x<1 => 109 x>0 (A)log;} {Bilog } } (Cology! (Dilog1} {{) lot'}} a> | E 贈 X31 Y>00 X21720 13 (E) 13 LAE) 02021 X<14>0 X>Y<0
ページ7:
對數函數及其圖形 qxxl f(x)=logax為嚴格遞增函权⇒X值愈大,权值就愈大 0<9<l 減 => 8. A = log + 5 b = log + 2 C=log₁ = d = log₁ = **N'? 小 1.判斷底权 2.x:5>2>3> 3> 遞減 ya<b<c<d 指权时权與对权函权互為反出权 f(x)是f(x)的反函数 9.f(x)=ax+b通过(17) f-'(x)通过(4,0) 权对(a,b)=? f(1)=a+b=7 > 反函數:xy互換 f(x)通过(0,4) f(0) = 0+6=4 V a+b=7 α=4 => (a,b) = 14, 3) # 1+6=4→ b =3 对权不等式 10. 7 logz (4-x) = 1 + logo (x-1) 真权>0 step1. [4-x20→x24 >>1444 底权>0 1< x < 0< 1-X 底≠ 1 step 2. log₂ (4-x) = log 4 4 + log4 (X-1) → log₁₂ (4-x)² = log₁ (4 × (x-1)] (換底公式) (logars = logar + loga>) step3. ∵遞增 (4-x)² = 4 (x-1) 16-894x224X-4 x²-12x+2020 (X-10)(x-2)20 大於在兩辺 小於在中間 7210 X≤2 x 1X24 找交集 2017. 由 FKX52 2 4 10
ページ8:
对对权函數轉換成多項式的权,求Max/min 11.xz / B fix ) = log (x 1)-3 logxx = ? f(x) Famin =? fix)= log (xlogx) - 3 log x² = logxx logx - blogx = log X)² - blog x = +2-bt =(4-3)2-9 t = 3 = log x => x = 10² = 1000# min=-9# ab.c.dŔ0.1 *N 1. 判斷a. Y y=loga X -y=leg₁₂x >x =y=logcx a.b>1 a<b b>a>lc>d>0# -Y=logy x occidet d<c 2.下圖為y=a+10gbxa、b均為常权何者為真? (A) D.<o b>1 (B) a>o, b>1 (c) α=o, b>1 (DI > 0<b<l T 投 19 (E) <0.0<b<l 逐 『贈 E Y 以下移:9<0 1234 >x 2.0<b<1 IE?# 3.求下列方程式的實权解個权 111x-1=10921×1 314 (2) X-1=1logx| 2個# 91,0) Y = X-1 X10 7/12/0 y=log=1x1 y=x-1(同左) 870 y=1100=xX1>0
ページ9:
4. ½ log = (log = (x) >I 1. 真奴x>0 2 [ X的範圍為? log, X>0x1 · log, lloga XXS log₁ = => 271 注意大於小於 log, x © + → log X © log¸ z² => X © 2³ J. K<x<₂ # 2-4 指权與对权函权的應用 科學記號 a=bx107 n是整权 146410 1. 11) 539000 = 5.39 × 105 (2) 0.000539 = 5.39 × 10-4 "Exα= bx 10" ntx 1≤ b < 10 01/09α = n + logb n是整权 n Allogα (1) loga的首权: (2)10ga的尾數:10g0 2. 已知10g3.561=0.5516則10g0.0003561的首权?尾权? log 10.00035611 = log (3.561 × 10-4) = log 3.561 + log 10-4 =0.5516-4 2 = -4 尾数=0.5516 →小权点後第4位開始不為0 loga的首权為n<=>a的整权部分為n+1位权(當a>1) 3.(1)已知10ga=3.5520G的整數部分是?位权 log4=3.5520 =3+0.5520 3+1=4位权# (2)已知10g20-3010 226是?位权 226 => /og 226 =26xlog 2 =26x0-3010 =7.826 7+1=8位权# "
ページ10:
自小双点後來首位開始出识弟 (30<^<1) 4.1110ga=-5.43210.在小权点後第2位開始不為。 log α = -5.4321 =-6+0.5679 = 第6位不為01 →屋权寫正 5. 將2-18化成小权,小权点後有連續 (2)將(3) 20化成小权,其小权点後第?位開始 1-4130 - 3-30 = 10g3-30 = -30x10g3 =-30x0.4771 不為口 14 n個0,第一個不為口的數字為 log 2-18=-18 x log2 a =-18×0-3010 =-5.418 =-6+0.582 第6位不為1022 = -14.313 =-15+0.687 第15位不為0~ →尾权寫正 本金P每期利率r 期权n →尾权寫正 「單利: n期後本利和Sn=P(1+nr) 0.4771<0.582 -0.60201 複利:n期後本利和Sn=P(1+r)^ ↓ log 3 log 3. ~ log4 :(na)=15,3) 7. 冰原覆蓋率(A%) 開始融冰後經過時間(七年) A = 100 × 12/11 -k+ 1000前~now(80%) 80=100x()-kx1000 ⇒(音)-1000k=80=生 now ~ 1000% (?%) 100 A=100x()-kx20 ⇒(1)-1000k)2 5 ⇒100×1号产=100×8=64% 6.年利率12.5% 複利至少超过2年 本利和才会超过本金的2倍 Y=12.5% 設本金x 7年 x(1+r)">24 (1+12.5%)722 100 +100)=112.5 -12">2 100=4-5 ==> log (1) " > log 2 ⇒n(10g9-10g8)>10g2 ↓ ↓ 23 log 3² log 2³ =2log 3 = 3log 2 N = 4 9. 8 ⇒n(2x0.4771-3×0.3010)>0.3010 ⇒n10.9542-0.9030)>0.3010 ⇒n(0.0512)>0.3010 n=0-3010 0.0512 = = 5.879 (nπ186)
ผลการค้นหาอื่น ๆ
สมุดโน้ตแนะนำ
คำถามที่เกี่ยวข้องกับโน้ตสรุปนี้
News
ความคิดเห็น
ยังไม่มีความคิดเห็น