学年

質問の種類

英語 高校生

答えあっていますでしょうか🥹🥹

6. I can't ( ) to buy such an expensive computer. そのような 2 brought 3 utter ⑩afford 7. They have decided ( ) some extra workers. 2 taking on 4 taking up afford to do ~する余裕がある ④forgotten 〈西日本工業大 〉 decide to do ~することして決める ① to take on 引き受ける 中文 〈桜美林大〉 ) to get the job that he had wanted. fail to do as w ③ to have taken up 8. Jeff ( 1 gave up 2 failed min 3 succeeded 4 told 9. Our boss, Mr. to retire Yamaguchi, hopes ( 2 retiring ) at the age of 65. 4 retired ③retirement Qto 10. I remember ( 1 see 〈城西大〉 hope to do ~することを望む gnied 〈名古屋工業大〉 ghivio remember doing ) Michael five years ago when he had a concert in Osaka. 2 seeing 11. "Nancy is very kind to her father." 3 to see (*"Yes. She remembers ( ) to him every week." 1 writing hom②written te q3 she writes to seeing remember to do ~したことを覚えてい <明治大 > ~することを覚えている、忘れずに~する 4 to writele マリーはドアをロックするのを忘れた、だから一晩中開けられていた (##) ~するのを忘れる ? 12. Mary forgot ( ) the door, so it was open all night. forget to do ~ ①about to lock 3 to have locked 今、事に言ったものを言ったことを後悔する Jibib Bost DovewD < 東京経済大 > Jhob sw 2 having locked to lock Pinch of of 2 saying ) gniteem erit tartt betasuper 4 to have been saying ero 〈立命館大〉 ? 13. Now I regret ( ) what I said to my brother. 1 being said of barlessed..m. 3 to have been said regret doing ~したことを後悔する

未解決 回答数: 1
英語 高校生

Task1は問題の意味はわかったのですが、上の疑問文を使ってどう書けば良いのかわからないので教えて欲しいです🙇‍♀️ Task2のほうは自分の回答があってるか見て欲しいです🙇‍♀️ どなたかすみませんがよろしくお願いします🙇‍♀️

ナウン クローズ 単語のあつまり 主語 と動詞 それ自身 では として A noun clause is a group of words with a subject and verb. A noun clause cannot stand by itself as a 独立できん sentence. 従う 私が提案することはつづける? T A subject of a verb 06956 An object of a verb A subject complement 補 66968 前置詞 An object of a prepositio 446307 An adjective complement アドジェクティブ 異なる食事を What I suggest is following a different diet. I don't think that I want to exercise. Your problem is that you need some motivation. 変える You can change your weight by what you eat. よってあなたが何を食べるかに Everyone is glad that Betty is getting married. That noun clauses usually follow... S+ V agree, believe, decide, guess, hope, think, suggest ... 学校のために I agree that we need more teachers for the school. S+ be verb + adjective afraid, angry, glad, worried, sorry, sure, surprised. . . 招待する 食 Tommy was surprised that you didn't invite him to your wedding. It + be verb + adjective amazing, clear, good, important, necessary, possible, true... It is possible that we'll have to take the exam in February. 可能がある Task 123 しげんをうけなければ いけない 名詞節 Complete the sentences using a noun clause. ex. Where did Gareth learn how to skate? → I wonder where Gareth learned how to skate. 1. How did he get the job? 2. Why is that woman standing outside? → He is curious about 3. We need to take out the trash tomorrow. → It is important Task 2 Circle the answers. is a mystery. I lost my mother's ring. She asked me where a. is her ring b. her ring was c. is your ring d. was her ring 3 The little boy next door is popular, but I don't know how many a. friends does he have b. friends has he c. does he have friends d. friends he has 2 The neighbors are playing their music loudly. I can't hear what a. is saying you b. you says you are saying d. that you says 4 I'm not going to fix up my apartment. is too expensive. 私がしたいこと a. Whether I want to do (b. What I want to do c. What do I want to do d. That I want to do

解決済み 回答数: 1
数学 高校生

数列です。一番最後の問題って単にnについての不等式だとみてそれを解けたりとかできないですよね?回答お願いします。

●2等比数列・ (ア) a, b, cは相異なる実数で, abc = -27 を満たしている.さらに,a,b,cはこの順で等比数 列であり, a,b,c の順序を適当に変えると等差数列になる.a,b,c を求めよ. (宮城教大) (イ) 初項と第2項の和が135で,第4項と第5項の和が40である等比数列{a}の公比は である.ただし各項は実数とする.また,初項が84で,初項から第5項までの和が290である等 ]である.これら2つの数列{a}, {bm}に関して,an>by が成り立つ 差数列{6} の公差は 最小のnの値は である. C (東京工科大・メディア) a, b, c がこの順に等差数列 bn 3項が等差数列, 等比数列になる条件 であるときa+c= 26, また, x, y, zがこの順に等比数列であるとき, πz=y2 が成り立つ (b-a=c-b; 等差数列・等比数列の大小 π:y=y:zより分かる). {a} が等差数列, {bm} が等比数列 (公 比は正)のとき, (n, an) は直線上, (n, bm) は指数関数のグラフ (下に 凸) 上に乗る. 等差数列, 等比数列の各項の大小はグラフを描くと様子 がはっきり分かる. (右図のように, 2交点の間では, 等差>等比) 解答 (ア) a, b, cはこの順で等比数列だから, ac=62 これとabc=-27より, 63-27 ∴.b=-3 cをαで表して, (a, b, c) = (a, -3, 9/α) ..ac=9 以下, 等差数列の条件を考える. 中央項がどれになるかで場合分けする. 9 a 9 2°a+==2(-3) 1° -3+-=2a 9 3° α+(-3)=2• a 1° のとき,2a2+3a-9=0 . (a+3) (2a-3)=0 a = bよりα キー3だから, a=3/2 ..c=6 2°のとき,a2+6a+9= 0 .. α=-3 これは α = 6に反する. 3°のとき, α2-3a-18=0 ∴ (α+3)(a-6)=0 以上から, (a,b,c) = (3/2, 3, 6), (6, -3, 3/2) (イ) {a} の初項をα 公比をとおくと, an=arn-1 a1+az=a+ar=α(1+r)=135 astas=ar3+ara=ar3(1+r)=40] a=6 12 \3 27 82 2|3 123 an 中央項がα, b, c で場合分け. 1° は αが中央項で, b+c=2α と なる. 2° はんが中央項, 3° はc が中央のとき. α=6のとき,c=9/6=3/2 [(イ) 後半の方針] > b は解 ... ける不等式ではない。最小の を求めたいので, n=1,2, … から 順に調べていくのが早い.なお, 座標平面上に (n, an), (n, bm) をプロットすると下図のように なる. より3= ar3(1+r) 40 a (1+r) 135 よって,r=" a=. 2 3' 135 135 -=81 1+r 5/3 b1+65 84+ (84+4d) {6} の公差をd とおく. b1 ~ 65 の和=- ・5= ・・5 が 290 Y 2 2 なので, (84+2d) ・5=290 2\n1 .. 42+d=29 .. d=-13 -y=97-13x y=810 a1 an=-81-1 ·(323), b₂=84–13(n−1) n 1 2 3 4 5 6 7 32 64 an 81 54 36 24 16 3 9 と表よりan>bmとなる最小のnは7. bi b² b3 bbs be at az 03 Sasas b 84 71 58 45 32 19 6 01234567 46 67 48 2

解決済み 回答数: 1
1/221