学年

質問の種類

数学 高校生

上から4行目はなぜこうなるのですか?

基本 例題 29 漸化式と極限 (4) *** 連立形 00000 P1(1, 1), Xn+1 1 = 4 4 xn+n, In+1= 5 3 -xn+ 4 面上の点列 Pn(xn, くことを証明せよ。 指針 点列 P1, P2, yn) がある。 点列 P1, P2, 1 5yn (n=1, 2,......) を満たす平 がある定点に限りなく近づくことを示すには,lim, limyn がと はある定点に限りなく近づ [類 信州大 ] p.36 まとめ, 基本 26 n→∞ もに収束することをいえばよい。 そのためには,2つの数列{x},{y}の漸化式から Xn, yn を求める。 ここでは,まず,2つの漸化式の和をとってみるとよい。 (一般項を求める一般的な方法については、解答の後の注意のようになる。) 811 Xn+1= 1 3 xn+ yn ①, Yn+1= 解答 4 1 x n + 1 − y n 5 Yn ② ①+② から Xn+1+yn+1=Xn+yn P1(1, 1) から x+y=2 x=1, y=1 よって xn+yn=xn-1+yn-1==x+y=2 ゆえに yn=2-xn これを①に代入して整理すると 11 Xn+1= xn+ 20 85 32 変形すると 11 32 Xn+1 xn 31 20 31 32 1 また X1 31 31 32 ゆえに Xn =- 31 31/ (-20 n-1 32 1 よって n→∞ また 32 30 limxn=lim no31 31 limyn=lim (2-x)=2- 1+0=and -20))} = 32 Q=-- a+ 32 31 数列{X-3は 1 |Xn+1= xn+ 特性方程式 11 20 8-5 の解 a= 公比 31 ラ 11 31 - 20 818 n→∞ 31 31 比数列。 y=2xから。 したがって, 点列 P1, P2, ...... は定点 31' 31 3230 に限りなく近づく。 一般に, x=a, y=b, xn+1=pxn+gyn, yn+1=rxn+syn (pqrs≠0) で定められる {x}, {yn} の一般項を求めるには, 次の方法がある。 方法1 Xn+1+αyn+1=β(x+αyn)としてα, β の値を定め, 等比数列{xn+yn} 用する。

未解決 回答数: 1
生物 高校生

(1)の柄にはBのかさに決める成分が存在していないのはどうしてですか。 大門8全体的に理解できてなくて😭(2)(3)はなんとなく理解しています。

核の働き 次の文章を読み, 以下の問いに答えよ。あかさ 単細胞生物のカサノリは、 核のある仮根から柄を伸 ばし, その先にかさをつくる。 かさの形が異なる 2種類(AB)のカサノリを用いて次の実験を行った。 実験1: カサノリAのかさを切断するとAのかさが 仮根 できた。 柄 核 A ○) B 実験 2: カサノリAの仮根に、Bの柄を接ぐと、AとBの中間型のかざができた。 実験3: カサノリBのかさを切断し,仮根も切断すると、カサノリBの柄からBの かさができた。 **( 1 )( i ) 問1 実験2の中間型のかさを切断すると、 どのようなかさができるか。 次の(ア)~(エ)か ら1つ選び、記号で答えよ。 (ア) 中間型のかさ (イ)A のかさ (ウ) Bのかさ (エ)かさはできない 問2 B の仮根にAの柄を接ぐと柄が伸びた。どのようなかさができるか。 次の(ア)~ から1つ選び, 記号で答えよ。をそれぞれ答え 中間型のかさ (イ)A のかさ (ウ)Bのかさ(エ)かさはできない 問3 実験の結果から考えられることとして最も適したものを、次の (ア)~(ウ)から1つ選 び記号で答えよ。 あてはまるものは大 白間 (ア) 核の成分だけがかさの形を決める。 (イ)柄の細胞質にもかさの形を決める成分が含まれる。 (ウ) かさの形は柄の細胞質の成分だけが決める まれている

未解決 回答数: 1
物理 高校生

まるされている部分の式の変換がわかりません 誰か教えてくれませんか

(mi+m2)a=mag-mg sin0 と、簡単にaが求められる。(前式⑥が系の運動方程式) A,Bの運動量の関係を考える場合がある。 張力を用いないでそれ を求めるには, 運動量はベクトルだから, A,Bを一直線上にする必 要がある。 上のように考えなおすと、考え易い。 masing my IB [B] 二物体間の糸の張力を求めるには,各物体の運動方程式を,直接働く力で作れ、 サイド上のように二物体が糸でつながれ動く問題では、各物体に直接働く力を考えよ. (例題) 定滑車Cに糸をかけ、 その両端に質量 Mの物体Aと質量mの物体 Bを図のようにつるす, Bは地上にあり, Aは地上から高さんのところに ある。ただし糸は長さが変わらず、滑車や糸は十分に軽く、滑車の摩擦は、 ないものとする。 また Mm, 重力の加速度をgとする物体Aを静 AQM に放して落下させるとき、次の(a)~(g) の値を計算する式を書け。 (a) A をつるしている糸の張力T 張力 F (c) Aの加速度α h (b) 定滑車Cをつるしている糸の (d) Aが地面に達する瞬間の速さ (f) Bが達する最高点の地面から (e) Aを放してから地面に達するまでの時間 の高さH(g) Bが高さんの点を通過してから最高点を経て再び高さんの点を通る までの時間 (東薬大, 類多数校) 解答] 運動方程式は Aにつき Ma=Mg-T …… Bにつき ma=T-mg (a) 上式からを消去すれば, ② (①xm-②XMによりかかり 2Mm T= M+m g 圈 なぜ (b) 滑車が受ける力は、上の糸に引き上げ られる力F, 物体をつるした糸に引き下 げられる力TとT これはTとTに等しい。 (d) この加速度で,高さん落下したときの 速さは v2=2ah より v=v2ah= M-m 12gh- 容 M+m 1 T' T A a Mgh a T' (e) それまでの時間は h=//zatz より =√2h = √2h M+m t=, a g M-m (f) Aは地面に衝突して糸はゆるみ, Bは 高さんの所で速さで投げ上げられる. そこから上る高さをん とすれば, B Img v2=2gh' (d)から 22 2gh M-m M-m h'= = 2g 2gM+m M+m ∴. H=h+h'=h1+ =h- M-m M+m 2Mh M+m 0=v-gt から 1'=2t=2=2~ 2h M-m 9 g M+m つり合っているから F-2T"=0 4Mm .. F=2T= g 答 M+m (c) ① ② からTを消去すれば、 M-m g M+m ●なぜ、 (g) ゴイド 上のように、滑車をつるす糸の張力を求めるには、滑車Cに着目し、そのつり合いを考えよ. - 天びんにつるした滑車に糸をかけ端に結んだが動く場合 脂針 余裕ができたらやる、 例題) 天びんの一方の腕に滑車Cをつるし、糸をかけ、質量2mmの A,B を結ぶ、はじめ滑車に制動をかけて静止させ, 天びんをつり 合わす。 制動を除き, A. B が動いているとき、 天びんをつり合わす AB A

未解決 回答数: 1
1/1000