学年

質問の種類

数学 高校生

数bの等比数列の質問です。この問題の⑵で立式がなぜこのようになり、式変形もどのようにやっているかがわかりません。教えていただきたいです。

Date 重要 例題 28 S2m, S2m-1 に分けて和を求める n 一般項がαn=(-1)+1n2 で与えられる数列 {an} に対して, Sn=ak とする。 (1) a2k-1+a2k (k= 1, 2, 3, ......) をんを用いて表せ (2) S= (n=1, 2, 3, ...) と表される。 指針 k=1 (2) 数列{an} の各項は符号が交互に変わるから,和は簡単に求められない。 次のように項を2つずつ区切ってみると Sn=(12-22)+(32-42)+(52-62)+...... =b2 =b1 =b3 上のように数列{bm} を定めると,b=akは自然数)である。よって,m を自然数とすると [1]nが偶数,すなわちn=2mのときはS2m=bx=(az-1+aan)として求め られる。 [2]nが奇数,すなわちn=2m-1のときは,S=S2-1+αm より S2m-1=S2m-a2mであるから, [1] の結果を利用して S2-1 が求められる。 このように、nが偶数の場合と奇数の場合に分けて和を求める a2k-1+αzk=(-1)2k(2k-1)^+(-1)2k+1(2k)2 =(2k-1)-(2k)=1-4k (−1)偶数=1, (−1)奇数=-1 ={(2k-1)+2k} CUSTO×{(2k-1)-2k} Sm=(a1+a2) +(as+as)+...... +(a2m-1+azm) 451 1 3種々の数列 [1]=2mmは自然数)のとき = m m S2m (a2k-1+a2k) = (1-4k) n m= 2 k=1 k=1 =m-4.1/23mm+1)=-2m-m -であるから S.=-2(2)-=-n(n+1) [2]=2m-1(mは自然数)のとき azm=(-1)2m+1(2m)=-4m² であるから S2m-1=Szmazm=-2m²-m+4m²=2m²-m n+1 であるから m= 2 S₁=2(n+1)² - n+1 = (n+ 1 (n+1){(n+1)-1} 2 2 Sm=-2m²-mに m= =2を代入して,n の式に直す。 S2m=S2m-1+a2m を利用する。 Szm-1=2m²-mをnの 式に直す。 =1/12m(n+1) [1],[2] から Sn= (-1)"+1 -n(n+1) (*) (*) [1] [2] のS” の式は 符号が異なるだけだから, (*)のようにまとめるこ とができる。

回答募集中 回答数: 0
数学 高校生

(ィ)の解説でan+2=an+1+anができるのが何故か教えて欲しいです!!

210 第7章 数 列 基礎問 135 場合の数と漸化式 6/5 (1)5段の階段があり, 1回に1段または2段 登るとする. このとき, 登り方は何通りある か. ただし, スタート地点は0段目とよぶこ とにする. (右図参照) (2)(1) と同じようにn段の階段を登る方法が an通りあるとする. このとき, (ア) α1, a2 を求めよ. (イ) n≧1 のとき, an+2 を αn+1, an で表せ. ◎(ウ) αg を求めよ. [N 139 211 (イ) 1回の登り方に着目して (n+2) 段の階段を登る方法を考えると次 の2つの場合がある. star ① 最初に1段登って, 残り (n+1)段登る ② 最初に2段登って, 残りn段登る ① ②は排反で (n+1) 段登る方法, n段登る方法はそれぞれ 舎の事象がすまたま、他方の事象 起きまない状態 an+1 通り, an通りあるので、 an+2=an+1+an an+2=an+1+an (ウ)(イ)より, ([+a)o= mi 平 =246+α5=2(astq4)+as 精講 (1) まず, 1段,2段, 2段と登る方法と2段, 1段, 2段と登る 方法は,異なる登り方であることをわかることが基本です. 次に、 1段を使う方法は5が奇数であることから1回,3回, 5回のどれかです. そこで、1と2をいくつか使って, 和が5になる組合せを考えて,そのあと 入れかえを考えればよいことになります. (2)(イ)これがこの135のメインテーマで, 漸化式の有効な利用例です. 考え 方は,ポイントに書いてあるどちらかになります. この問題では, どちらで も漸化式が作れます. (ウ)漸化式が与えられたとき,一般項を求められることは大切ですが, 漸化 式の使い方の基本は番号を下げることです. as=a+a6 (α6+α5)+a6 参考 m =3a5+2a=3(α+α3) +2a4 =5a4+3a3=5(a3+α2) +3as =8a3+5a2=8(a₂+a1)+5a2 10219 13+84=13×2+8×1=34 (通り) IA 91 ポイント I. (ウ)の要領で α5 を求めると, αs=3a2+2a1=3×2+2=8 (通り)となり,(1)の答と一致します。 Ⅱ. 最後の手段に着目するときは,次の2つの場合となります. ① まず (n+1) 段登って、最後に1段登る ② まずn段登って、最後に2段登る ポイント 場合の数の問題で漸化式を作るとき,次のどちらか ① 最初の手段で場合分け ② 最後の手段で場合分け 第7章 解答 (1)5段の階段を登るとき, 1段登ることは奇数回必要だから, 1段を1回使う組合せは, 1段, 2段, 2段 3回使う組合せは, 1段, 1段, 1段2段 5回使う組合せは、 1段, 1段, 1段1段, 1段で 演習問題 135 横1列に並べられたn枚のカードに赤か青か黄のどれか1つの それぞれ,入れかえが3通り, 4通り、1通りあるので 3+4+1=8 (通り) (12,2)(2112)(2.2.1) (11.1.1) (2) (ア) 1段登る方法は1つしかないので, a=1 2段登る方法は,1段, 1段と, 2段の2通りあるので, a2=2 色をぬる. 赤が連続してはいけないという条件の下で,ぬり方が an 通りあるとする. (1) α1, 42 を求めよ. (2)n≧1 のとき, an+2 を an+1, an で表せ. (3) αg を求めよ.

回答募集中 回答数: 0
地学 高校生

問1をわかりやすく解説してほしいです🙇‍♀️

重要例題 3 地震の発生と規模 4分 北 白矢印は外力 いま, 右の図1のように外力が作用する地域で地震が発生し, 断層が生じた とする。 問1 図1のように, 東西方向に水平な圧縮力が最大で, 垂直方向の圧縮力が 1 最小のときに形成される断層はどれか。 次の①~⑤のうちから最も適当なものを一つ選べ。 ① ② 北金 北 ③ 北 ④中北 ⑤ 北 下盤 上盤- 上盤 下盤 向 問2 地震の規模 (マグニチュード)は,そ の地震の際に放出されるエネルギーに関 連し、両者の間には、 右の図2のような 関係がある。 また, 地震のエネルギー は,地震の際に生じる断層面の面積(長 さ×幅)と断層のずれの量の積に比例す ると考えられる。 7 6 5 ネ 4 ル ギ 3 (1016J) 2 1 マグニチュードがそれぞれ, 7.3, 7.9000 0. の二つの地震について, 大きいほうの地 震の断層のずれの量が,小さいほうの地 7.0 7.2 7.4 7.6 7.8 8.0 マグニチュード 図2 地震のマグニチュードとエネルギーの関係 震の断層のずれの量の2倍であったと仮定すれば, 大きいほうの地震の断層面の面積は,小さいほ うの地震の断層面の面積の何倍程度になるか。次の①~④のうちから最も適当なものを一つ選べ。 ①2倍 ② 4 倍 0001 ③8倍 ④ 16倍 [1997 本試 改] 考え方 明 1 別れはま級と

回答募集中 回答数: 0
数学 高校生

数II 微分 この問題の答えが私が解いた答えと合わないのですが、なぜ答えのようにならなくてはいけないのかわかりません。赤線引いたところが間違えたところです。 教えていただきたいです🙇‍♀️

356 重要 例題 224 区間に文字を含む3次関数の最大・最小 f(x)=x-6x2+ 9x とする。 区間 a≦x≦a+1 における f(x) の最大値 求めよ。 指針 この例題は, 区間の幅が1 (一定) で, 区間が動くタイプである。 00000 M() を 基本200 まず, y=f(x) のグラフをかく。次に, 区間 a≦x≦at1をx軸上で左側から移動し ながら, f(x) の最大値を考える。 場合分けをするときは,次のことに注意する。 A 区間で単調増加なら, 区間の右端で最大。 区間で単調減少なら, 区間の左端で最大。 両極値をとるxの値がともに区間に含まれることはないから © 区間内に極大となるxの値があるとき,極大となるxで最大。 >0 (8) 区間内に極小となるxの値があるとき, 区間の両端のうちf(x)の値が大きい方 で最大→区間の両端で値が等しくなる場合が境目となる。 すなわち f(x)=f(a+1) となるとαの大小により場合分け。 A 最大 ® (1)M 最大 最大 [2] a<1ma+ 0≦a <1のと f(x)はx=1 M(a)=1 次に, 2 <α <3 f(a)=f(a+1) a3-6a2+▪ 3a² ゆえに よって a= 2 <α <3と5< [3] 1≦a< f(x)はx= M(a)= 解答 最大 または 9+√33 [4] 6 f(x)はx= M(a) f'(x)=3x²-12x+9 =3(x-1)(x-3) f'(x) = 0 とすると x=1,3 f(x) の増減表は次のようになる。 x 1 f'(x) + 0 - 3 f(x) 解答の場合分けの位置のイ y=f(x)メージ 以上から 4--- y=f(x)| 4 NN [2] [3] [4] 0 + 極大| 極小 01 3 a01 a 3a+1 x 4 0 検討 よって, y=f(x)のグラフは右上の図のようになる。 ゆえに、f(x)のa≦x≦a+1における最大値 M (α) は,次 のようになる。 [1] a+1 <1 すなわち α <0の [1] y とき f(x)はx=α+1で最大となり 1指針のA [区間で単調増 加で,右端で最大]の場 最大 合。 M(a) =f(a+1) =(a+1)-6(a+1)^+9(a+1) =a³-3a²+4 1 1 a O 1 a+1 3 3次関数のク p.344 の参考 ラフは点対 はない。す るとき 対称ではな 練習 |上の解答の =1/2とし Q= なお、放物 f(x)=x³- ⑤224よ。

回答募集中 回答数: 0
1/1000