学年

質問の種類

数学 高校生

127と128について質問です。 言ってる意味はわかるんですが、黄色い線が引いてあるところの3行がどうしてそうなるのか、また値域ってなに?となってしまいます。教えていただけると嬉しいです。

第1象限 3象 2象 4象限 B. 第3 2次関数 解答編 27 2 1 この関数のグラフは、 直線 y=x+2の に対応する部分である x=2のとき y=-2+2=0 x=2のとき y=1+2=3 101 ① ② を解いて (2)/(2)=4 から -5 よって、 グラフは [図)の実線部分である。 よって、 関数の値域は 0≤y≤3 126 (1) ∫(1)-2から a+b=-2 ...... D (3)4から 3a+b=4 ...... ② f(4)=0から ①.② を解いて a-3, b=-5 2a+b=4・・ ① 4a+b=0 ..... 2 a=-2,b=8 また、この関数は x=1で最大値3をとり この関数のグラフは、 4に対応する部分である。 -1のとき y=2·(−1)-3 のとき y=2-4-3=5 (3) x=-2で最小値0をとる。 (4) 127 0 より この関数のグラフは右下がりの 直線の一部であるから, f(x) =ax + b とすると, 「値城は (1) Sys/(-1) すなわち a+bsys-a+b) この値が-3syS1と一致するから」 a+b=-3, -a+b=1 これを解いて a=-2,b=-1 ラフは [図] の実線部分であ -5≤y≤5 0 最大値5をとり、 これはa<0を満たす。 第1節 2次関数とグラフ 43 125 次の関数のグラフをかき, 関数の値域を求めよ。 また、 関数の最大値 最小 図p.90 例題1 (2) y -2x+3 (-15x52) ☑ 値を求めよ。 (1) y=2x-3 (-1≤x≤1) (3) y=-3x+4 0x2) (4) y=x+2 (-25x51) ただ1つ *(5) y=x+4 (-2≤x≤2) *(6) y=-x+1 (0≤x≤4) B 問題 126 1次関数 f(x) =ax+bが次の条件を満たすとき,定数a, b の値を求めよ。 □ (1) ∫(1)-2,(3)=4 (2) f(2)=4,(4)=0 のよう 5. 1. SERV 1次関数の決定 例題 14 関数y=ax+b (1≦x≦3) の値域が, 0≦y1 となるような定数a, bの値を求めよ。 ただし, 0 とする。 第3章 2次関数 よって頂点の座標 (2,3) (8-1-5) -46x-1 + +(0-2) 104 +40 y=x =20 (a- 数学Ⅰ A・B・C問題 で最小値5をとる。 (5)関数のグラフは、直線y=1/2x+4の グラフは、直線 y=-2 対応する部分である。 128 問題の考え方■■■ -22に対応する部分である。 とき y=-2(-1)+3 き y=-2.2+3=- は [図] の実線部分で Sy≤5 x=2のときy=1/2 (-2)+4=3 SEL 基本的には問題127 と同様だが,に関する 条件が与えられていないため、 場合分けをす る必要がある。 p. 6 x=2のとき y=1/22+4=5 [1] a>0のとき 考え方 関数のグラフが直線の一部であるとき、 定義域の端の値に対応するyの値が、 値域の端の値になる。 それぞれどちらに対応するかは,xの係数の符号によっ て定まる。 解答 0 より この関数のグラフは右上がりの直線の一部であるから, よって、 グラフは [図] の実線部分である。 値は 3≤y≤5 この関数のグラフは,右上がりの直線の一部」 であるから, f(x) =ax+b とすると, 値域は f(x)=ax+b とすると, 値域は f(1) sysƒ(3) すなわち また、この関数は 大値5をとり, x=2で最大値5をとり (-1) Sy≤(2) a+b≦ys3a+b この値域が0y1 と一致するから a+b=0.3a+b=1 37号 すなわち -a+b≦y2a+b 直-1 をとる。 (2) x=-2で最小値3をとる これを解いて a=12. b=-12 これはα>0を満たす。 圏 この値域が, -7SyS8 と一致するから (6)この関数のグラフは、直線 y=- =1/2x+10 a+b=-7.2a+b=8 0≦x≦4に対応する部分である。 これを解いて a=5,b=-2 これは>0を満たす。 x=0のとき y=-0.0+1=1 x=4のとき y=-1/24+ ・4+1=-1 [2] a=0のとき この関数は y=bとなり, 値城が-7y8 とはならない。 よって、 グラフは [図 ] の実線部分である。 [3] <0のとき 関数の値域は -15y≤1 また、この関数は -直線 y=-last 分である。 =-3.0+4=4 =-3-2+4-1 x=0で最大値1をとり (5) x=4で最小値1をとる。 (6) yt ■実線部分である。 これを解いて =-5,b=3 り。 とる。 この関数のグラフは,右下がりの直線の一部 であるから, f(x) =ax+b とすると, 値域は f(2) ≤ y ≤ƒ(-1) すなわち 2a+bsys-a+b この値が-7Sys8 と一致するから 2a+b=-7, -a+b=8 これはa<0を満たす。 0 [1]~[3]から a=5, b=-2 または a=-5,b=3 【?】 α>0 という条件がないときはどのようになるだろうか。 127 関数 y=ax+b (1x1)の値域が,-3≦x≦1 となるような定数a, b の値を求めよ。 ただし, <0 とする。 をxcm 128 関数y=ax+b (12) の値域が, -7≦y≦8 となるような定数a, b の値を求めよ。 1 -3)

未解決 回答数: 1
数学 高校生

数IIの軌跡と方程式の問題です 「点Qは①上の点であるから」のところ は、どこらからそれが分かるのかと 「点Pと点Qが一致するとき」となぜPとQは対称なのに 一致する場合を考えるのかが分かりません 教えてください🙏

本 例題 100 直線に関する対称移動 000 直線x+y=1 に関して点Qと対称な点をPとする。 点Qが直 x-2y+8=0 上を働くとき、点Pは直線 上を動く。 6 基本 CHART & SOLUTION 対称 直線 に関して PQが対称 [1] 直線 PQ が に垂直 [2] 線分 PQ の中点が上にある 点Qが直線x-2y+8=0 上を動くときの, 直線l:x+y=1 に関して点Qと対称な点 Pの軌跡、と考える。つまり, Q(s, t) に連動する点P (x,y) の軌跡 → s, tをx, yで表す。 答 直線 x-2y+8=0 •••••• ① 上を動く点をQ(s, t) とし, 直線 x+y=1 ...... ② ② x, y だけの関係式を導く。 [in 線対称な直線を求め ① るには EXERCISES 71 (p.137) のような方法も 4Q(s,t) あるが, 左の解答で用いた 3章 13 に関して点Qと対称な点を P(x, y)とする。 1 軌跡の考え方は、直線以外 の図形に対しても通用する。 [1] 点PとQが一致しない とき, 直線 PQ が直線 ② 01 x P(x,y) に垂直であるから 1-y.(-1)=-1 (③ 垂直傾きの積が1 s-x 線分PQの中点が直線 ② 上にあるから 「軌跡と =1 ④ 2 ③から 2 s-t=x-y 線分 PQ の中点の座標は x+sy+t ④から s+t=2-(x+y) 2 2 s, tについて解くと s=1-y, t=1-x 上の2式の辺々を加え また,点Qは直線 ①上の点であるから ると 2s=2-2y 辺々を引くと s-2t+8=0 ⑥ ⑤ ⑥に代入して (1-y)-2(1-x)+8=0 -2t=2x-2 s, tを消去する。 すなわち 2x-y+7=0 ⑦ 点PとQが一致するとき、点Pは直線 ①と②の交点 方程式①と②を連立 であるから x=-2, y=3 させて解く。 これは ⑦を満たす。 二から, 求める直線の方程式は 2x-y+7=0

解決済み 回答数: 1
数学 高校生

数IIの軌跡と方程式の問題です 青色のマーカーの「逆に」という部分が どこから導き出せたか分かりません 2問同じところで分かりません 教えてください🙏

られた条件を付 を求める 本 例題 98 曲線上の動点に連動する点の軌跡 ののののの 点Qが円x+y=9 上を動くとき、点A(1,2)とを結ぶ線分AQ を 2:1 に内分する点Pの軌跡を求めよ。 p.158 基本事項 CHART & SOLUTION る。) ものを除く 連動して動く点の軌跡 9 点Pが 。 s2+t2=9 1・1+2s x= 2+1 1+2s y= ラ 3 2+1 よって S= ラ -31-1,1-31-2 t=3y-2 つなぎの文字を消去して,x だけの関係式を導く ****** 動点Qの座標を(s, t), それにともなって動く点Pの座標を (x, y) とする。 Qの条件をs, を用いた式で表し,P,Qの関係から, s, tをそれぞれx,yで表す。 これをQの条件式に 代入して, s, tを消去する。 3章 解答 Q(s, t), P(x, y) とする。 Qは円x2+y2=9 上の点であるから Pは線分AQ を 2:1 に内分する点であるから 13 YA 3 軌跡と方程式 ① (s,t) 1.2+2t 2+2t A (1,2) 13. 0 x 3 2 こんに内分 P(x,y) -3 .y) これを①に代入すると3x21)+(3v=2)=9 つなぎの文字 s, tを消 2 2 9 ゆ x- + V =9 4 3 + melli 去。 これにより,Pの条 ugetug件(x,yの方程式)が得 られる。 よって(x-/1/3)+(y-2/28)2-4 =4 ***** (2) 以上から、 求める軌跡は 中心 (1/3 2/23 半径20円 P(y)とがいて POINT 曲線 f(x, y) = 0 上の動点 (s,t) に連動する点(x, y) の軌跡 ① 点 (s, t) は曲線 f(x, y) =0 上の点であるからf(s, t) = 0 したがって,点Pは円 ②上にある。 逆に円 ②上の任意の点は、条件を満たす。 上の図から点Qが |円 x2+y2=9上のどの位 置にあっても線分AQ は 存在する。 よって, 解答で 求めた軌跡に除外点は存在 しない かなを満た妨方程式で導いたのだから、Pはその方程式の ・表札・図形 ほあ ② s, tをそれぞれx, yで表す。 ③ f(s, t)=0に②を代入して, s, tを消去する。

回答募集中 回答数: 0
数学 高校生

1枚目のマーカー部分の問題が分かりません。なぜ定義域の中心の値はa+1/2なのでしょうか。まずこの関数の定義域が分かりません。そしてこの問題はなぜいろいろ定義域を使って考えるのですか?根本から問題の解き方がわかりません。回答よろしくお願いします🙇🏻‍♀️

例題22 定義域が動く場合の最大・最小 解答 第2節 2次関数の値の変化 49 針■■■ 辺の長さをyとして aは定数とする。 関数 y=x²-2x+1 (a≦x≦a+1) の最小値を求 めよ。 考え方 定義域の幅は1で一定で,αの増加とともに定義域全体が右に移動する。 (解答) グラフが下に凸のとき,軸に最も近いxの値で最小値をとる。 これより,軸x=1の位置について以下のように場合分けをする。 [1] 定義域の右外 [2] 定義域内 [3] 定義域の左外 y=x²-2x+1を変形すると y=(x-1)2 よって、この放物線の軸は直線x=1, 頂点は点 (1, 0) である。 また x=αのときy=α2-2a+1, x=a+1のときy=a² [1] α+1 <1 すなわち a<0 のとき x=α+1で最小値 α2 [2] a≦1≦a+1 すなわち 0≦a≦1のとき x=1で最小値 0 [3] 1 <a のとき x=αで最小値α² -2a+1 第3章 2次関数 2辺の長さの和が12 角をはさむ2辺の 方の定理よりを 最小値を 辺の一方の長さ である。 0から yとすると すると x+144 1+72 あるから. 最小値 から も最小となる める最小値 E a a+1 [2] y [3] と同様に が大変であ 0a 1 0 1 a a+1 x a+1 =1より x2+y2 ? 163aは定数とする。 関数 y=x2-4x+3 (a≦x≦a+1) について,次の問いに 答え *(1) 最小値を求めよ。 * (2) 最大値を求めよ。 (3) (1) で求めた最小値を とすると は αの関数である。この関数のグ ラフをかけ。 (4)(2)で求めた最大値をMとすると,Mはαの関数である。この関数のグ 2+ y² 1± y=] x= 3=0 xy ラフをかけ。 ヒント 163 (2) 軸が定義域の中央より右, 中央, 中央より左で場合を分ける。

解決済み 回答数: 1
1/233