学年

質問の種類

数学 高校生

Focus Gold 数学II 例題98 写真の赤線部はなぜ成り立つのですか?

例題 98 円外の点から引いた接線(2) 2円の方程式 ***** x+y=5に点 (31) から接線を2本引く。そのときの2つの接点 P,Q とするとき,直線PQ の方程式を求めよ。 [考え方 接点の座標をP(x, yì), Q(x2,y2) とおいて求める 解答 接点をP(x1,yi), Q(x2,y2)とすると、 点Pにおける接線は, xx+y=5 3x+y=5Q...① 3x2+y2=5... ② これが点 (31) を通るから, 点Qにおいても同様にして ①②より、点P. Qは直線 3x+y=5 上の点である 2点PQ を通る直線は1本に決まるので、直線 PQ の方程式は, 3x+y=5 (別解) 点R(3,1) とする. △OPR と △OQR は合同な三角形 だから、対称性より, OR⊥PQ 円x+y=r上の 点(x1, yi) における 接線の方程式 xx+y=r YA R(3, 1) √5- P P (3. 0 x x 1Q これより直線PQの傾きは3で あるから kを実数として, 直線 PQ は,y=-3x+kとおける 0 1QS 原点と直線 PQ の距離 dは, d= |-k| k √32+12 10 ここで 直線 OR と直線 PQ の交点をSとすると, (直線ORの傾き) (直線PQの傾き) 図より, k0 △OPR∽△OSP であり, OR=√10 OP√5OS= k ∠POR = ∠SOP, √10 ∠OPR = ∠OSP だから5:10:5 k=5 10 OP: OS=OR: 0 よって、 直線 PQ の方程式は、 y=-3x+5 Focus 円外の点(x,y) から円x+y=r" に引いた接線の 2 接点を通る直線は, xox+yoy=r.2 (極線) 注 <証明> 接点を (x1,y1)(x2,y2) とすると, 接線はxx+yy=rx2x+yzy=r YA (xo, yo) (x, y) となりともに点(x,y) を通るから, xix+yiyo=r2, x2x+yayo=r2 (*) O X2Y2 ここで, 直線 Xox +yoy=r を考えると、 (*)より(x,y) (x2,y2) はこの直線上の点である。 よって, 求める直線は, xox +yoy=r(証明終) 同様に考えて、円外の点(x0,yo)から円(xa)(y-b)=rに引いた接線 の2接点を通る直線の方程式は, (xa)(x-a)+(yo-b)(y-b)=r 練習x+y=10 に点(5, 5) から接線を2本引く。 そのときの2つの接点を結 98 直線の方程式を求めよ。 ***

未解決 回答数: 1
物理 高校生

カッコ2って鉛直方向の初速度が同じでも小球bがp点に届かなかったらダメなんじゃないですか?それを考えてない理由を教えて欲しいです🙇

する 際 EEE-1-2 =1-13-1 力学的エネルギーは運動エネルギーと位置エネルギーの和をさすが, 位置エネル ギーは衝突の前後で変わっていないので,運動エネルギーの減少を調べればよい。 27 (1) Aを原点として鉛直上向きにy軸をとる。 落下するのは y = 0 のとき だから, 求める時間をとして公式 2 を用いると 0 = vt₁+(-g) t₁² 20 ... = g (2) 鉛直方向の初速度を同じにする必要がある(するとAとBはいつも同じ高 sin α = さにいる)。 そこで Vsin a = v (3) 最高点に達するまでの時間を とすると,公式より 0=v+(-g)t t2= t として 3 求めると早い この間にBは右への距離を動けばよいので l= (Vcosα)t2= Vv g cos α = g Vu √1-sin² a Vv 2 = 1 √√√√² - v² g 動量保存則より (4) 求める水平成分を vx とする。 水平方向での運 MV cos α = (M+m) vx 衝突直前 Mo m Ux= MV M+m M Vcosa 止 2 cos α = M+m Vx 直後 M+m 鉛直成分は A, B 共に衝突前が0なので 0 水平方向は外力がないので運動量保存は厳密に成りたつ。 一方、 鉛直方向は重力が かかっているが, 瞬間的な衝突では(重力の力積が無視できるため) 近似的に適用し てよい。 問題文にとくに断りがなければ, 瞬間衝突と思ってよい。 (5) 初速 ux での水平投射に入る。 落下時間はt なので 鉛直方向に上がる時間 V²-12 と下りる時間は等しい) x=vt= Mo

回答募集中 回答数: 0
1/1000