学年

質問の種類

数学 高校生

2番です。 qについて何の記述もなしに急に式に用いて大丈夫なんですか?また(解答の2点を通るときの計算のように),を打っていけば2つの式を同時に計算して良いのですか? 最後に、私の記述に問題ないですか?

基本形) 一般形) 分解形 ) 点(p,q) 軸が直線 -p)²+q 値がg → -p)²+q 0) , 0), を通る→ -a)(x-B) つで,どの であるから, 1次方程式 cの係数 1 であるこ 立方程式 解く。 7+b 2-1 89 2次関数の決定(1) 基本例題 2次関数のグラフが次の条件を満たすとき, その2次関数を求めよ。 (1) 頂点が点(-2, 1) で, 点(-1,4)を通る。 (2) 軸が直線x= x=1/12で2点(-1, -6),(1, 2) を通る。 指針 2次関数を決定する問題で,頂点(p, g) や軸x=pが与えられた場合は 基本形 y=a(x-b)+α 頂点が(■) からスタートする。 すなわち,頂点や軸の条件を代入して (1) y=a(x+2)²+1, (2) y=a(x-1)² +9 から始め, 通る点などの条件からag の値を決定する。 CHART 2次関数の決定 頂点や軸があれば基本形で 解答 (1) 頂点が点(-2,1)であるから, 求める2次関数は y=a(x+2)2+1 よって と表される。 このグラフが点(-1, 4) を通るから 4=α(−1+2)^+1(*) (2) 軸が直線x= ゆえに y=3(x+2)²+1 (y=3x²+12x+13でもよい) すなわち これを解いて よって であるから 求める2次関数は y=a(x - 2)² +9 とされる。 このグラフが2点(-1, -6), (12) を通るから a=3 -6=a(-1-1)² +9°, 2-a(1-2)* +9° a+4g=8 9a+4q=-24, a=-4,g=3 12 y=-4(x-1) ²+3 (y=-4x2+4x+2でもよい) p.142 基本事項 ① y=a(x-)²+1 軸がx=● (*) y=f(x)のグラフが 点 (s, t) を通る ⇔t=f(s) 注意 y=a(x-p+g と おいて進めたときは,この形 を最終の答えとしてもよい。 なお,本書では,右辺を展開 した y=ax2+bx+c の形の 式も併記した。 (S) 辺々を引いて 8a=-32 よって α=-4 第2式から 4g=12 よって g=3 間数を求め上 P 143 章 2次関数の最大・最小と決定 でる 10 る。 る。 2) D) とは な満 進 う。

回答募集中 回答数: 0
数学 高校生

至急でお願いします🙏‼️ 赤の部分の方法を教えてください🙏

うる値 座標は ₁ の 2 のとき y=31 である。 CHART & SOLUTION 2次関数の決定 頂点、軸の条件が与えられたときは 基本形 y=a(x-p)^+αからスタート (1) y=a(x-1)2+3 (2) y=a(x+1)+α を利用して係数を決定する。 (3) 定義域に制限がないので, 「x=-3 で最小値-1をとる」頂点が点(-3,-1)で に凸→y=a(x+3)2-1 (a>0) と表される。 解答 (1) 頂点が点(1,3) であるから, 求める2次関数は y=a(x-1)2+3 と表される。 グラフが点(0, 5) を通るから 5=α(0-1)2+3 これを解くと a=2 y=2(x-1)2+3 (y=2x²-4x+5 でもよい) よって (2) 軸が直線x=-1 であるから, 求める2次関数は y=a(x+1)+α と表される。 グラフが2点(-2, 9), (1,3) を通るから 9=α(-2+1)+α, 3=α(1+1)^+q a=2 p. 107 基本事項 3 y=2(x+3)2-1 (y=2x²+12x+17 でもよい) 整理して a+g=9, 4a+q=3 これを解くと a=-2, g=11 よって y=-2(x+1)2+11 (y=-2x²-4x+9でもよい)ゆえに (3) x=-3 で最小値-1 をとるから、求める2次関数は- y=a(x+3)2-1 (a>0) (I と表される。x=1のときy=31 であるから (1) 31=α(1+3)^-1 これを解くと これは α>0 を満たす。 よって • RACTICE 68② 次の条件を満たす2次関数を求めよ。 ■ ) グラフの頂点が点 (13) で,点(-1, 4) を通る。 グラフの軸が直線x=4で2点 (21) (5-2 ← x=0 のときy= ←5=α+3 から。 x=-2のとき x=1のとき 辺々を引くと よってa=- 9=9-(- 最小値をもつ 注意 y=a(x- 形を最終の答え なお,本書では 開した y=ax 形も記した。

回答募集中 回答数: 0
数学 高校生

至急でお願いします🙏‼️ 赤の部分の方法を教えてください🙏

うる値 座標は ₁ の 2 のとき y=31 である。 CHART & SOLUTION 2次関数の決定 頂点、軸の条件が与えられたときは 基本形 y=a(x-p)^+αからスタート (1) y=a(x-1)2+3 (2) y=a(x+1)+α を利用して係数を決定する。 (3) 定義域に制限がないので, 「x=-3 で最小値-1をとる」頂点が点(-3,-1)で に凸→y=a(x+3)2-1 (a>0) と表される。 解答 (1) 頂点が点(1,3) であるから, 求める2次関数は y=a(x-1)2+3 と表される。 グラフが点(0, 5) を通るから 5=α(0-1)2+3 これを解くと a=2 y=2(x-1)2+3 (y=2x²-4x+5 でもよい) よって (2) 軸が直線x=-1 であるから, 求める2次関数は y=a(x+1)+α と表される。 グラフが2点(-2, 9), (1,3) を通るから 9=α(-2+1)+α, 3=α(1+1)^+q a=2 p. 107 基本事項 3 y=2(x+3)2-1 (y=2x²+12x+17 でもよい) 整理して a+g=9, 4a+q=3 これを解くと a=-2, g=11 よって y=-2(x+1)2+11 (y=-2x²-4x+9でもよい)ゆえに (3) x=-3 で最小値-1 をとるから、求める2次関数は- y=a(x+3)2-1 (a>0) (I と表される。x=1のときy=31 であるから (1) 31=α(1+3)^-1 これを解くと これは α>0 を満たす。 よって • RACTICE 68② 次の条件を満たす2次関数を求めよ。 ■ ) グラフの頂点が点 (13) で,点(-1, 4) を通る。 グラフの軸が直線x=4で2点 (21) (5-2 ← x=0 のときy= ←5=α+3 から。 x=-2のとき x=1のとき 辺々を引くと よってa=- 9=9-(- 最小値をもつ 注意 y=a(x- 形を最終の答え なお,本書では 開した y=ax 形も記した。

回答募集中 回答数: 0
1/2