学年

質問の種類

数学 高校生

画像2,3枚目の〜❓マークの3点が理解できませんでした。 なぜそうなるのかを教えてほしいです。

第2問 必答問題) (配点 15 k,nを自然数とし,kについての条件Aを次のように定める。 条件A: k" が (n+1)桁の数となる。 (2)以下の問題では,必要ならば次の値を用いてもよい。 log102=0.3010.log103= 0.4771, log 107=0.8451, logio 11=1.0414 花子さんと太郎さんは, 続いて次の課題2 について話している。 0 課題2 条件Aを満たすんの個数が1となるようなnの最小値を求めよ。 よ (1)太郎さんと花子さんは、次の課題1 について話している。 課題 1 条件Aを満たすkの個数が、xの値によってどのように変わるかを考察 せよ。 太郎:いきなり”で考えることは難しそうだね。 n=1の場合から具体的 に考えてみよう。 花子: n=1のときは,条件Aは 「kが2桁の数となる。」つまり 10≦k < 10°と表せるね。 このようなkは全部でアイ個あるよ。 99-9=90 n=2のときはどうなるかな。 花子: どのようなnに対してもk=10は条件Aを必ず満たすことはわ かっているよ。 太郎: そうか。 条件Aを満たすの個数が1となるときは,k=10のみと わかるね。 花子 (10-1)", (10+1) (n+1) 桁になるかどうかに注目してみよう。 (10-1)" は (10+1)" は blog (10-1) == Welogioco - (ogrol) =n-logol 条件Aを満たすkの個数が1となるためのnの必要十分条件は, キが (n+2) 桁以上になることである。 J: 0125 0 あることがわかるよ。 花子:n=3のときも同じように計算していくとnを大きくしていく と、条件を満たすの個数は減っていく気がするね。 n をどんど ん大きくしていくと, 条件Aを満たすんの個数が0となるのか な? 56.78.9 太郎: n=2のときは,条件Aは 「kが3桁の数となる。」 だから, 10°k < 10°を満たす自然数を数えればいいね。 10=3.16... であることを用いると,この不等式を満たすには全部で ウェ 個 10≦k10010 31-9=22 10k<31.6... 以上より, 条件Aを満たすんの個数が1となるとき,n クケであり, 求めるnの最小値はクケであることがわかる。 の解答群 ⑩どのようなnに対しても (n+1) 桁にならない実 は ①nの値によって, (n+1) 桁になるときとならないときのどちらもある 70-4300 キ の解答群 太郎:10” は (n+1) 桁だから,k=10のときは,条件Aを必ず満たすよ。 ⑩ (10-1)" ① 10+1)" だから,条件Aを満たすんの個数が0とはならないね。 (3) 条件Aを満たすの個数が2となるようなnは全部で コサ個ある。 (数学Ⅱ,数学B,数学C第2問は次ページに続く。) -9- - 8 コロ

回答募集中 回答数: 0
生物 高校生

生物 ハーディワインベルグの法則 3番の(1)がなんでその遺伝子頻度になるか教えてください

ルグの法則が成り立つものとする。 この集団における各血液 型の割合を,遺伝子頻度から予測せよ。答えは,四捨五入に より小数第1位までの百分率で示すこと。 1724209+40.95 An 9²+2qr-0.21 13:0218の All: 0.0918 0.2 6:0:3136 (A型・・・ (A型・・・ 38%) (B型... 22%) (AB型・・・ 3 3. 次の文章を読み, 以下の問いに答えよ。 ある2倍体の生物にはA型 B型 C型の3種類の 対立形質があり,この形質はA型にする遺伝子 A, B 型にする遺伝子 B, C型にする遺伝子Cの3種類の遺 伝子によって決まる。 これらは同じ遺伝子座に存在す る複対立遺伝子で, AはBおよびCに対して顕性であ り,BはCに対して顕性である。 この生物のある集団において, 5000 個体の形質を調 査したところ, A型は 3750 個体, B型には1050 個体、 C型は 200 個体であった。 この集団はハーディ・ワイ ンベルグの法則が成り立つものとする。 (1) この集団の遺伝子Aの頻度をp, 遺伝子 B の頻度 合 (p+q+r=1), p, q, r のそれぞれの値を求めよ。 )(0.2) (p0) (q0.3 ) (r... D. 2 さ (2) この集団から A型の形質の個体がすべて除去され 頻度の値を答えよ。 (A・・・ 5同じ ) (B... ) (0... N.S R 2年 一組 番

回答募集中 回答数: 0
1/1000