学年

質問の種類

数学 高校生

画像の問題でなぜa=0の場合も考えなければならないのですか。 また下の問題ではa=0の場合を考えずに解いていたのですが何の違いですか。

重要 例題 56 1次関数の決定 (2) 101 ののののの 関数y=ax-a+3 (0≦x≦2) の値域が 1≦ysb であるとき、定数a,bの 値を求めよ。 基本 49 CHART & THINKING グラフ利用 端点に注目 1次関数とは書かれていない。 また, 1次の係数の符号がわからないから, グラフが右上 がりか、右下がりかもわからない。 このようなときは,αが正, 0, 負の場合に分けて考えて みよう。 →a>0 のときグラフは右上がり, a<0 のときグラフは右下がり。 a>0, a=0, a<0 の各場合において値域を求め、 それが 1sysb と一致する条件から a. bの連立方程式を作り、 解く。 このとき,得られたαの値が場合分けの条件を満たしているかどうか確認することを忘れ ずに。 解答 x=0 のとき y=-a+3, x=2のとき y=a+3 [1] α>0 のとき [1]y この関数はの値が増加するとyの値も増加するから x=2で最大 b, x=0で最小値1をとる。 3 7 関数とグラフ よって これを解いて +3=b, -α+3=1M a=2, b=5 んで これは α>0を満たす。 wwwwwwww [2] α=0 のとき -a+3 70 よん?! この関数は α=0 の場合を忘れない y=3 ように。 このとき, 値域は y=3 であり, 1≦ybに適さない。 定数関数 [3] α <0 のとき [3].y この関数はxの値が増加するとyの値は減少するから, x=0で最大値 b, x=2で最小値1をとる。 ba+3 よって -a+3=b, a+3=1 これを解いて α=-2,6=5 これは α<0 を満たす。 [1]~[3] から (a, b)=(2, 5), (-2, 5) PRACTICE 56 定義域が −2≦x≦2, 値域が −2≦y≦4 である1次関数を求めよ。 (2) 関数y=ax+b b≦x≦b+1) の値域が-3≦y≦5であるとき、定数a, b の 値を求めよ。 が正って なんでわかるのか

未解決 回答数: 1
数学 中学生

分からないのでわかる方いたら、解説お願いしますm(_ _)m

10 関数 y=ax2 ✓チェックコーナー 中学で学習したこと 1 関数 y=ax² yはxの2乗に比例し、x=3のとき y = 18 であるとき ポイント xの式で表すと y=l ] x=2のときy=[ 2 関数y=ax のグラフ (1) 関数 y=ax のグラフを[ ]という。 (2) グラフは [ ]を通り, [ ]軸について対称。 (3) α > 0 のときは, [ 開いた形。 ]に開いた形α 0 のときは [ (4) αの値の絶対値が小さいほど, グラフの開き方は [ 51 関数y=ax のグラフが点 (2,-4) を通るとき、 次の問に答えな さい。 (1) α の値を求めなさい。 y 0 x 2 ]に 0 [増] ]。 (2)この関数のグラフをかきなさい。 -6- (3)この関数のグラフは,点(-5,m) を通る。 m の値を求めなさい。 -8 052 右の図の(1)~(4) は下のテ〜 エ の関数のグラフを示したものである。 (1)~(4) はそれぞれどの関数のグラフか ⑦ y=x2 ①y=-2x2 ⑦y= H A 12 23 x2 -10 ·12 (1) (3) (4) (2) y = ax¹ a> o yはxの2乗に比例し 153 で表しなさい。 x=-3のとき y=3であるとき yをxの式 関数 y = 2x で, xの値が1から めなさい。 3)関数y= めなさい。 1から3まで増加するときの変化の割合を求 -xで,xの変域が2≦x≦5のときのyの変域を求 4)関数y=ax2 で, xの値が4から2まで増加するときの変化の割合 は3である。の値を求めなさい。 5) 関数 y=ax2 で, xの変域が-1≦x≦3のとき, yの変域が 0≦ys6 の値を求めなさい。 である。 α 154 右の図のように、関数y= 1 2 xのグラ 上に, x座標がそれぞれ3,2となる点A, Bをとる。 また, 点Cはx軸上の点であり, 座標は3である。 次の問に答えなさい。 (変化の割合) _yの増加量) ( xの増加量) 変化の割合は、 1次関数 y=ax+bで は一定だが、 数y=axで は一定ではない。 (3)y の変域を 求めるときは、 グラフの形を考 え、xの変域に 0をふくむとき は注意する。 < (1) まず 物 と直線の交点 A,Bの座標を 求める。 直線AB の式を求めなさい。 <座標に目もりが 2 △AOBの面積を求めなさい。 ないが、放物線 線分AC 上の点で, △AOBAPB となるような点Pをとる。 点Pの がどちら側に いているか 開 座標を求めなさい。 き方の大きさは どうかから考え ると,答えられ x る。 < (2) AAOB & y 軸で2つの三角 形に分けて考え るとよい。 (3)直線AB と 平行で点を通 る直線と線分 AC との交点を 考える。 高校で学習すること 高校では, 関数 y=ax2 のグラフをx軸方向に, y 軸方向にだけ平行 移動させたグラフ(頂点が原点0にない放物線) を学習する。(数学1 ) y=ax W 0 原点 -(2.α) I チェック 1 2x2, 8 2 (1) 放物線 (2) 原点 (0),y (3) 上下 (4) 大きい

未解決 回答数: 1
数学 中学生

数学自体が嫌いすぎて分からないので、教えてくださいm(_ _)m

9 1次関数 中学で学習したこと チェックコーナー 1 1次関数 1次関数 y=-2x+5 について (1)x=4 に対応するyの値は[-3]。 (2) 変化の割合は [2] (3) xの増加量が3のときのyの増加量は [-6]。 (4)xの変域が2x3のときの yの変域は[-1 2 1次関数のグラフ ≦910 1次関数 y=-2x+5のグラフは, B 変化の割合が1 ポイント 1次関数の表, 式, グラフ x ...-2-1 0 1 2 y ... 9 7 5 3 1 ... x=0 のときの yの値 xが1増加した ときのyの増加量 y=-2x+5 変化の割合 2 3 傾き 直線の式は y=- とmと 4との交点を A,直線1,”とx軸との 交点をそれぞれB,Cとする。 次の問に答え 右の図で、直線の式は y=2x-1, みたす1次 次関数を求めなさい。 次の条件をみたす で,x = -4 のとき y=7 グラフが2点(2)(3)を通る。 グラフが点(4, 1) を通り, 直線 y=-2x-4 に平行 く傾きがmなら、 式を y=mx + b と おき、点の座標 が(p,g)なら x=D.y = q この式に代入 して,bの値を 求める。 <(3) 平行な直線 は、傾きが等し い。 -x+2 である。 直線 (1) 傾きが[ 2 ], 切片が[ 5 ]。 (2) 右へ進むと, 上へ ] 進む 切 (3) グラフは [ 右]下がりの直線。 46 1次関数y= - x-1 について,次の間に答えなさい。 3 2 (1)この関数のグラフの傾きと切片を求 めなさい。 (2)この関数のグラフをかきなさい。 (3)xの変域を 1 <x<4 としたとき のyの変域を求めなさい。 (4) このグラフをy軸の正の方向に3平 行移動させた直線の式を求めなさい。 0 5 < 1次関数 y=ax+b 傾き 切片 なさい。 点Aの座標を求めなさい。 2) △ABCの面積を求めなさい。 O /B 直線1mの交 点だから、1,m の式を連立方程 式として解いて 求める。 < (4) では,平行移 動させても傾き は変わらない。 グラフ上の各点 は3だけ上に移 動する。 50 して、時速4km で歩いて図書館に向 兄は, 家から2km離れた図書館に自転車で行き, 図書館で本を借りて から同じ速さで家に戻った。 弟は, 兄が家を出発してから15分後に家を出発 y(km) 47 右の図の直線(1)(2)(3)の式を求 かった。右のグラフは, 兄が家を出 発してからx分後の家からの道のり ykmとして, 兄の進むようすを 2 1 (1) (3) 傾きを調べるに -5- めなさい。 は、 x 座標, y 座 標がどちらも整 表したものである。このとき,次の 問に答えなさい。 0 10 20 30 40 50 (分) 数になる2点を 考えるとよい。 0 5 (1) 兄の自転車の時速を求めなさい。 (2) 兄と弟がすれ違うのは, 家から何kmの地点か, 求めなさい。 弟の進むようす を表すグラフを かき入れる。 コーナー (1)-3-(2)-2(3)-6(4)-Sys 2 (1)-2, 5 (2)-2 (3)

未解決 回答数: 1
1/111