学年

質問の種類

数学 中学生

(3)②と③の問題の解き方教えてください! ちなみに答えは②√5③25/12です。 図形に色々書いてあって見ずらいかもしれませんがすみません💦

【問4】 各問いに答えなさい。 図1は、円の円周上に3点A, B, C があり, 線分AB が円Oの直径であり, AとC, BとCをそれぞれ結んだも のである。 ∠Cの二等分線と線分AB, 円0との交点をそ れぞれD, Eとする。 AC=3cm, BC=6cm とする。 (1) 図1において, ∠ABC=α°とするとき, 大きさを表す式を,次のア~エから1つ選び, きなさい。 7 (a +30) ウ (75-α) T (a +45)° I (90-a) ① 四角形 AFBCの面積を求めなさい。 (2) 図2は、図1において, 線分CE上にCB // AF となる 点Fをとり,FとA, F とBを結び, F からABに垂線 FGをひいたものである。 ② FGの長さを求めなさい。 ADCの 記号を書 SATB = 2 290 SHEN old ofor A 図2 かげ A D it old G=EXEXY 3√5 x 10 x 1/² = 9 21α= 4² 22. ỏ DOG SVE 3154²9. E 6am 9+3 9+36-² x2=45 2=3√5 [GVS B. 755 245 215 5 (3) 図3は、図1において, 線分 AE 上に CA//DF となる 点Fをとり、点と点を結んだものである。 ① △ACD △DAF は, 次のように証明することがで に証明の続きを書き, 証明を完成させ きる。 なさい。 [証明] △ACDと△DAF で, CA//DF で, 平行線の錯角は等しいから, <CAD=∠ADF ...... ① ② 線分ADの長さを求めなさい。 ③ △DFEの面積を求めなさい。 図3 191 F ADO 9+36=x2 X²=/ 45 B

回答募集中 回答数: 0
数学 中学生

赤線🎈の所が分かりません💦かけるのかなって思ったのですが どうゆう事ですか?解説お願いします🙇‍♀️ プラスでどうやって解くのかも教えて欲しいです(この問題全体の)

(8 (エ) 右の図①のように, 求める線分が対応する辺になるような相似な三角 形をつくって考えてみます。 辺BAの延長と線分FEの延長との交点をP, DCの延長と線分 EFの延長との交点をQとします。 まず,点Eは辺ADの中点であるから AE:ED = 1:1,BF:FC=3:1 より FC=①とすると, BF=③, AD=BCであるから, AE=ED=② と表されます。 また, CG: GD=2:1よりCG=2 とすると,GD= 1. CD = AB であるから, AB=3 と表されます。 次に, △PAEと△PBF において, 共通な角より, APE=∠BPF・・・・ ①, AD//BCより, AE//BF であり,平行線の同位角は等しいから, <PAE=∠PBF... ②, よって, ①, ②より2組の角がそれぞれ等しいから, PAESPBF であり,相似 比は AE: BF =②:③であるから, PA: PB=2:3,AB= 3 より PA 6 PB=9と表せることがわかります。 同様に、△QCF △ QDEであるから, CF : DE = 1: 2 より QC:QD=1:2, CD=3であるから QC=3と表 せることがわかります。 さらに, △PBH と △QGH において, 対頂角は等しいから,∠PHB=∠QHG・・・・ ③. AB//DC より PB//GQ であり, 平行線の錯角は等しいから,∠PBH=∠QGH・・・ ④ よって, ③, ④より. 2組の角がそれぞ れ等しいから, PBH △QGH であり, PB=9QG=QC+CG=3 +2=5 より,相似比はPB : QG = 9:5が わかります。 よって, BH: HG = 9:5 と求められます。 〔別解〕 右の図のように, 辺ADの延長と線分BGの延長と の交点をPとして考えてみます。 △BCG と△PDG において, 対頂角は等しいから<CGB= 図② 図① B 13 A E /H F 1 ○ H 2 P N G 2 2 G

回答募集中 回答数: 0
数学 中学生

解き方を教えてください 途中式も教えてください🙇‍♀️

5 AB > BC の長方形ABCDがある。 次の (1)~(3)に答えよ。 (1) 図1のように, 長方形ABCD を, 点Cを中心として時計回りに, 辺ABが点Dに重 なるまで, 回転移動させる。 このとき、図2のように,点A,B, D が移った点をそれぞれ点E,F,G とする。 また, 点Gから辺CDに垂線をひき, 辺CDとの交点をHとする。 B 証明 図2において, CF=GH であることを、次のように証明した。 ア (△ 仮定から )と (△ において 図2 B ∠CFD=∠GHC=90° ...... ① 長方形EFCG は, 長方形ABCD を回転させたものだから CD=GC ...... ② -7- H E 平行線の錯角は等しいから, EF//GCより イ ( = L ①,②,③より, 直角三角形の斜辺と1つの鋭角がそれぞれ等しいので (△ ) = (A ) 合同な図形の対応する辺は等しいので CF=GH 証明の下線部アにはあてはまる合同な三角形の組を, 下線部イにはあてはまる等しい 角の組をそれぞれ答えよ。 (2) 図3は、図2において, 点Dと点Gを結んだものである。 図3において, AGED = AGHD であることを,直角三角形の合同条件を使って証明 せよ。 ただし, (1) で証明した CF = GH は, 「仮定」 としてそのまま用いてよい。 図 4 図3 B D H E (3) 図4のように, AB=15cm, BC=8cm, AC=17cm の長方形ABCDを 直線lにそっ てすべらないように, 点C, D, Aをそれぞれ回転の中心として、 再び辺BCが直線ℓ に重なるまで転がしていく。 このとき, 点Bが動いてできる線の長さを求めよ。 (D) ・G -8- B C

回答募集中 回答数: 0
数学 高校生

66. BP:PC=AB:ACより BP:PC=AB:ADと言えるのは AC=ADだからですか??

) E 性質。 て方 始めよ 基本例題66 角の二等分線の定理の逆 △ABCの辺BC を AB AC に内分する点をPとする。 このとき, APは∠A の二等分線であることを証明せよ。 KORE & COCK 指針 p.402 基本事項 ② 定理1 (内角の二等分線の定理) の逆である。 題意を式で表すと BP:PC=AB:ACAPは∠Aの二等分線 ( ∠BAP=∠CAP) 線分の比に関する条件から,角が等しいことを示すには,平行線を利用するとよい。 ∠Aの二等分線⇒BP:PC=AB:AC の証明 (p.402 解説)にならい,まず, 辺BA のAを越える延長上に, AC=AD となるような点Dをとることから始める。 別解∠Aの二等分線と辺BCの交点をDとして,2点P, Dが一致することを示す。 なお,このような証明方法を 同一法または一致法という。 3830 解答 △ABCにおいて、辺BAの延長上に点D をAC=AD となるようにとる。 BP: PC=AB:ACのとき, BP:PC=BA: AD から 25 AP // DC ゆえに ACAD から 12/48 ∠BAP=∠ADC 円 BPC ∠PAC=∠ACD ∠BAP=∠PAC すなわち, APは∠Aの二等分線である。 別解 辺BC上の点Pが ① ∠ADC=∠ACD 注意 ②から BP:PC=AB:AC .... (1) を満たしているとする。 ∠Aの二等分線と辺BCの交点をDとすると, 内角の二等 分線の定理により D BETAGA AB:AC=BD: DC ・・・・・・ BP:PC=BD:DC ② 平行線と線分の比の性質の 逆 1390 38 p.402 基本事項 ② 平行線の同位角、錯角はそ れぞれ等しい。 △ACD は二等辺三角形。 031185A U AR DP C B HULA ICA RO よってPとDは辺BCを同じ比に内分するから一致する。 したがって APは∠Aの二等分線である。 中の p.402 基本事項 2② の定理 2 についても逆が成り立つ。 下の練習 66 でその証明に取り組 んでみよう。 GORITO BCの辺BC を AB: AC に外分する点をQとする。 このと 線であることを証明せよ。 405 章 三角形の辺の比、五心 3章 10

回答募集中 回答数: 0
数学 高校生

数Aの問題です。 (2)の解説で、 「C,D, P, Qは同一円周上の点なので、四角形 CPQD は等脚台形であるから、AP=AQより、三角形ADCはAC=AD の二等辺三角形である。」 とありますが、等脚台形だからAP=ADを導き出せる過程が分かりません。

設問 右の図のように,2点A,Bで交わる2円において,Aを 通る直線がその2円と交わるA以外の交点をそれぞれP, Q とする。 さらに, 2点P, Q における円の接線をそれぞれ引き, その2接線の交点をCとおく。 (1) 4点 B, C, P, Q は同一円周上にあることを証明せよ。 (2) AP = AQ のとき, AP'=AB AC であることを証明せよ。 解答 (1) APBAにおいて接弦定理より ∠CPA=∠ABP △QAB において接弦定理より ∠CQA=∠ABQ よって ∠PCQ + ∠PBQ =∠PCQ+ ∠ABP + ∠ABQ =∠PCQ+ ∠ CPA+ ∠CQA P =180° であり, 4点B, C, P, Q は同一円周上にある。 (2) 4点 B, C, P, Q を通る円と直線 AB の B 以外の交点をDとおくと, 円周角の定理より ∠DCQ=∠DBQ P P D (証明終) Q S (1)より, CQA=∠ABQ なので ∠DCQ=∠CQA よって, CD // PQ である。 これと,C, D, P, Q は同一円周上の点なので, 四角形 CPQD は等脚台形である。 ここで, AP = AQより, △ADC は AC = AD の二等辺三角形で 等脚台形は上底の中 点,下底の中点を結ぶ あるから 方べきの定理より AP AQ=ABAD 直線に対して線対称 である。 .. AP2 = AB・AC このことはCとDが一致する場合も成り立つ。 Q ( 証明終) Q 同一円周上にあるため の条件は向かい合う内 角の関係を考えるわけ だが,接線が絡んで いるので,接線と角の 関係が使える接弦定 理が有効。 錯角が等しい。

回答募集中 回答数: 0
1/14