学年

質問の種類

数学 高校生

(2)と(3)の解き方がなぜ異なるのかがわかりません。 (2)では0以上3以下が範囲として許されているので 4種類の中から重複を許して5個取り出すという点で4H5になることは理解出来ました。 しかし(3)でもa1,a2,…,a5は0以上で和が3なので、 0以上3以下(和の上... 続きを読む

386 重要 例題 34 数字の順列 (数の大小関係が 等式 次の条件を満たす整数の組 (a1, A2, A3, 4, α5) の個数を求めよ。 (1)0<a<az<a<a<a<9 + 0000 (2) 0≤aa2a3 a4 a5≤3 O 8の8個の数字から異なるこ (3) a1+aztas+a+Qs≦3, ai≧0 ( 2, 3, 45) X 合わせても相野べて煮なるから、1.2... 8 688/3/1777 ような解き方 a,a2, α5 を対応させればよい。 指針 (1) 個を選び, 小さい順に α1, A2, → 求める個数は組合せ C5 に一致する。 11ff112 ex.) ○+△+=9 Hr 重複は許さない まだ 基本 32 (2)(1) とは違って、条件の式に≦を含むから, 0, 1,2,3の4個の数字から重複を許 して5個を選び, 小さい順に α1, A2, ....., as → 求める個数は重複組合せ H5 に一致する。 を対応させればよい。 (3)おき換えを利用すると,不等式の条件を等式の条件に変更できる。 3-(a+a2+as+α+α5) =bとおくと また, a1+a2+αs+a+α5≦3から a+a2+as+a+αs+b=3 b≥0 よって,基本例題 33 (1) と同様にして求められる。 8の8個の数字から異なる5個を選び、小検討 α5 とすると,条件を満たす組が (1)1,2, ..... さい順に a1, A2, 1つ決まる。 よって, 求める組の個数は ついてない 8C5=8C3=56 (個) (2)0,1,2,3の4個の数字から重複を許して5個を選び, 小さい順に a1,a2, ......, α5 とすると, 条件を満たす組 が1つ決まる。 よって, 求める組の個数は 4H5=4+5-1C5=8C5=56 (個) (3) 3-(a1+a2+α3+α+α5)=bとおくと I .. ① ai≧0 (i=1,2,3,4,5), 6≧0 和が3以下 ○和が0のとき ・和が1のとき 2のとぎ a1+a2+as+a+a+b=3, ← 一等式 (2),(3)は次のようにして 解くこともできる。 (2)[p.384 検討 PLUS ONE の方法の利用 bi=aiti(i=1,2,3, 4, 5) とすると, 条件は 0<b<b<b<b<bく と同値になる。よって (1)の結果から 56個 + (3) 3個の○と5個の仕 よって、求める組の個数は, ① を満たす 0 以上の整数の 組の個数に等しい。 これは異なる6個のものから3個取 る重複組合せの総数に等しく 6H3=6+3-1C3=8C3=56 (個) 別解 a1+a2+as+a+as=k(k= 0, 1, 2, 3 を満たす 0 以上の整数の組 (a1, 2, 3, 4, α5) の数は5Hkであ るから 5H0+5H1+5H2+5H3 3のとき 場合の数を =4Co+5C1+6C2+7C3 =1+5+15+35=56 (個) 切りを並べ、例えば、 |〇||〇〇|| の場 合は (0, 102, 0) を表すと考える。 このとき A|B|CD|E|F とすると, A, B, C, DE の部分に入る 0 の数をそれぞれ al, an 振り 43, 4, as とすれば、 組が1つ決まるから 8C3-56 (1) 場合の によ ・代表 ・(a) .27 . • 10 10 (1 1 Sl

未解決 回答数: 1
数学 高校生

組(a1 a2 a3)と組み合わせ(a1 a2 a3)は一対一対応 の一対一対応とはどのような意味ですか? 詳しく教えてくださいお願いします。

ステージ2 典型手法編 場合の数 前 ITEM で見たように,順列の方が順序を のがふつうです.しかし、条件として順序が指定されている場合には, きます. ここが ツボ! 順序が指定されているなら、「順列」の代わりに「組合せ」を参」 例題20A サイコロを3回投げるとき, 出た目を順に a1,a2,a3 と する. a <az<α3 を満たす組 (a1,a2, α3) の個数を求めよ. 着眼1 第何回の目であるかに応じて au, 42, 43 と名前が付けられていますから、 ○○を区別 ? ろん出た目の順番を区別して考えます. 「組」とは順序を考えたものですから、たとえば (2,3,5)(2,5,3) を異なるものとして数えるべきなのですが,本間では a1,a2, α3 の大小関係が指定 れているため,(2,5,3) などはカウントしません。つまり どの3種類の目が出るか が決まれば,組(a1,a2, α3) も自動的に決まってしまうのです. [解答 a <az<αのとき 6C3= 順列 よって求める場合の数は、サイコロの目 : 1,2,3,4,56から異なる3個の目を選ぶ 組合せを考えて α3)」と「組合せ {a1,a2,a3}」は1対1対応. 「組(a1,a2, 6・5・4=20(通り). 3.2 事情が変わ 解説本来「組合せ {a1,a2,a3) (a1,a2,a3 は全て相異なる)」1つから作られる 「組 (a1,a2, as)」の個数は,3!=6通り)です。つまり「組合せ」と「組」の対応関係は 1:6 ですね.しかし本問では大小関係 「a <az<as」により1:1の対応となります. 組合せ 順序指定なら 1対1 順列 12, 43} は同じものを含む ことが許されるため, やや難しくなり,重複組合せ( ITEM24, ITEM39) を考える ことになります. 参考1 本間の条件が a≦a≦as となった場合, 組合せ {a1,a2, internet の8文字を並べるとき, 3つの母音iee が 例題20B この順に並ぶものは何通りか? 着眼2] 前問において「大小関係α <az<a」が決まって やって みよう1

未解決 回答数: 1
数学 高校生

33.1 記述特に問題ないですかね??

348 基本例題 33 重複組合せの基本 次の問いに答えよ。 ただし, 含まれない数字や文字があってもよいものとする。 (1) 1,2,3,4の4個の数字から重複を許して3個の数字を取り出す。 作られる組の総数を求めよ。 (2) x,y,zの3種類の文字から作られる6次の項は何通りできるか。 ■p.347 基本事項 解答 (1) 3つの○で数字, 3つので仕切りを表し, 1つ目の仕切りの左側に○があるときは 1つ目と2つ目の仕切りの間に○があるときは 2つ目と3つ目の仕切りの間に○があるときは 3つ目の仕切りの右側に○があるときは を表すとする。 tekn このとき3つの○と3つの|の順列の総数が求める場合の 数となるから 6C320 (通り) (2) 6つの〇でx, y, zを表し、2つので仕切りを表す。 このとき, 6つの○と2つのの順列の総数が求める場合の 数となるから 8C6=gC2=28 (通り) 11361 指針 基本事項で示した„Hy=n+r-Cr を直ちに使用してもよいが,慣れないうちはnと 違いやすい。次のように,○と仕切り」による順列として考えた方が確実。 (1) 異なる4個の数字から重複を許して3個の数字を取り出す。 →3つの○と3つの仕切り | の順列 (2) 異なる3個の文字から重複を許して6個の文字を取り出す。 →6つの○と2つの仕切りの順列 検討○と」を使わない重複組合せの別の考え方 別アプ ローチ 練習 ③33 数字 1 数字 2 数字 3 数字 4 このとき ○重要35 (1) 例えば,〇〇|〇| BACK 1 234 れる。 したがって 求める組合せの総数は,C3=20 (通り) である。 で (1,1,3)を表し、 SUB101010 (2) 例えば, 1234 (2,3,4)を表す。 00|0010 00010100 xy 2 xyz2を表す。 (1)で,取り出した数を小さい順に並べ、その各数に 0,1,2を加える。例えば 1,1,3→1,2,5 3,4,4→3,5,6 となる。 このようにしてできる数で最小のものは1+0=1, 最大のものは 4+2=6で あるから 求める組合せの総数は, 1,2,3,4,5,6の6個の数字から3個を取り出す 組合せ 総数は C) に一致すると考えられる。 逆に,このようにしてできる組において, 2, 3 4 2,2, 2; 1,3, 6→ 1,2,4のように,各数から 0, 1,2を引けば、条件を満たす組合せが得ら (1)8個のりんごをA,B,C,D の4つの袋に分ける方法は何通りあるか。 し, 1個も入れない袋があってもよいものとする。 (2)(x+y+z) の展開式の異なる項の数を求めよ。 「基 (1. (2 指針 解 (1) (2) 3 こ C = 別角 C 練

回答募集中 回答数: 0
数学 高校生

赤い線の9C2が分かりません😭

り出す。この きるか。 3 うちはn た方が確 った 29 整数解の組の個数(重複組合せの利用) 基本例題 (2) x+y+z=6 を満たす正の整数解の組(x,y, 2) は何個あるか。 (1) x+y+z= 7 を満たす負でない整数解の組(x,y, 2) は何個あるか。 CHART SOLUTION ○と仕切り の活用・・・・・・ (1) x+y+z= 7 を満たす負でない整数解の組(x, y, z) は、7個の○と2個の 仕切りの順列を考え, 仕切りで分けられた3つの部分の○の個数を、左から 順にx,y,zとすると得られる。 例えば 〇〇〇一〇〇|〇〇には 一〇〇|〇〇〇〇〇には M.2 基本事項 基本 28 がそれぞれ対応する。 (2) 正の整数解であるから,x,y,zは1以上となる。 そこで,x-1=X, y-1=Y, z-1=Zとおき, 0 であってもよい X≧0, Y≧0, Z≧0 の整数解 の場合 ((1) と同じ) に帰着させる。 これは、6個の○のうち,まず1個ずつをx, y, zに割り振ってから,残った3個の○と2個の仕切りを並べることと同じ である。 解答 (1) 求める整数解の組の個数は7個の○と2個のを1列に 並べる順列の総数と同じで 021 9C7=9C₂= -=36 (個) 9.8 2・1 (x,y,z)=(3,22) (x,y,z)=(0,25) 31 120** 別解 求める整数解の組の個数は,3種類の文字 x,y,zから 重複を許して7個取る組合せの総数に等しいから 3H7=3+7-1C7=9C7=9C2=36 (個) (2) x≧1,y≧1, z≧1 から x-1≧0, y-1≧0,z-1≧0 ここで, x-1=X, y-1=Y, z-1=Z とおくと X+Y+Z=6-3=3 よって求める正の整数解の組の個数は、3個の○と2個の を1列に並べる順列の総数と同じで PRACTICE ... 29 ③ ・・・ 3つの部分に分けるには, 3-1=2 (個) の仕切り が必要。 9! 2!7! でもよい。 5.4 5C3=5C2=- -10 (個) 2・1 21-HAL 別解 ○を6個並べる。 求める正の整数解の組の個数は,○と ○の間5か所から2つを選んで仕切りを入れる方法の総数 と等しいから 5Cz=10 (fE) 277 別解 3H3 = 3+3-1 C3 =5C3=5C2 10 (個) (1)x+y+z=9を満たす負でない整数解の組(x,y,z)は何個あるか。 (2) rul の整数解の組(x,y,z) は何個あるか。 3 組合せ ◆仕切り | は, 両端に入れ ることはできない。

未解決 回答数: 1
1/8